

    
      Navigation

      
        	
          index

        	
          next |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
ComputeNext REST API

Contents:



	Introduction
	Concepts

	API endpoint

	API Versions

	Authentication

	Obtaining API Keys





	Resources
	Introduction

	Resource API Methods
	Query Resources

	Retrieve Region Details

	Retrieve Region Properties

	Retrieve Image Restrictions

	Retrieve Resource Capabilities

	Resource Details

	Retrieve Resource Actions

	Validate Resource

	Resource Errors









	Resource Schema

	Instances
	Introduction

	Actions

	Instance Methods
	Create instance from resource

	Retrieve request

	Retrieve multiple requests

	Create an instance from an instance

	Retrieve instance

	Retrieve multiple instances

	Update instance

	Update instance metadata

	Delete instance









	Resource Types, Actions and Parameters
	Resource Types

	Virtual Machine (vm) Instance Schema
	Method: vm.create

	Method: vm.create.image

	Method: vm.retrieve

	Method: vm.retrieve.password

	Method: vm.update.password

	Method: vm.update.start

	Method: vm.update.stop

	Method: vm.update.reboot

	Method: vm.delete





	Key Pair (kp) Instance Schema
	Method: kp.create

	Method: kp.retrieve

	Method: kp.delete





	Security Group (sg) Instance Schema
	Method: sg.create

	Method: sg.retrieve

	Method: sg.update.add-access

	Method: sg.update.remove-access

	Method: sg.delete





	Volume Storage (vs) Instance Schema
	Method: vs.create

	Method: vs.retrieve

	Method: vs.update.attach

	Method: vs.update.detach

	Method: vs.delete





	Volume Snapshot (snap) Instance Schema
	Method: snap.create

	Method: snap.retrieve

	Method: snap.delete





	Floating IP Address (ip) Instance Schema
	Method: ip.create

	Method: ip.retrieve

	Method: ip.update.add

	Method: ip.update.remove

	Method: ip.delete





	Image (image) Instance Schema
	Method: image.create

	Method: image.retrieve

	Method: image.delete









	Workloads
	Introduction

	Workload Methods
	Create workload

	Clone workload

	Retrieve workload

	Retrieve multiple workloads

	Update workload

	Delete workload

	Create/Update workload element

	Delete workload element

	Plan workload

	Execute workload plan

	Retrieve transaction steps

	Retrieve transaction errors

	Retrieve transaction status

	Cancel transaction









	Workload Schema
	name

	description

	metadata

	elements





	Workload Element Schema
	name

	uri

	parameters
	keyPair

	securityGroups

	attachTarget





	metadata





	Getting Started with Instances
	Create A Key Pair

	Create A Virtual Machine

	Create A Private Image from a Virtual Machine





	Getting Started with Workloads
	Download and Install runcws

	Set Up runcws

	List (Retrieve Multiple) Workloads

	Create Workload

	Retrieve Workload

	Clone Workload

	Update Workload

	Update Workload Element

	Delete Workload Element

	Delete Workload

	Plan Workload Activation
	plan.action

	plan.expires

	plan.elements

	plan.serial

	plan.inventory

	plan.summary

	Workload Steps

	How the Plan is Generated





	Execute Workload
	Running Workload

	Partial Failures and Rollback





	Transaction Status
	retries

	timeout

	cancelled





	Transaction Steps

	Transaction Errors

	Transaction Completes

	Cancel Transaction

	Plan Workload Deactivation













          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Introduction

The ComputeNext Web Services REST API is an Application Programming Interface (API) designed to search for, provision, manage and control cloud computing resources from
the ComputeNext Marketplace.


Concepts

Customers can search and browse Cloud Resources available in the marketplace from multiple cloud providers.

The resources can be provisioned as Instances. Applications are typically deployed as dependent services.

A Workload is a grouping or collection of multiple cloud resources that captures the description of the services a customer needs.
It includes the details and configuration of the services, their dependencies and desired service-level expectations.
The workload is also the entity that facilitates management and control of provisioned instances.




API endpoint

The ComputeNext API is available on the base URL:

<https://cws.computenext.com/api/>





The section Resources gives examples of making resource queries based on this base URL above.




API Versions

The latest API version is 2.0. It is accessible via the base URL shown above though user authentication is required.




Authentication

The API supports HTTP Basic Authentication method using API Key and Secret Key.
See Obtaining API Keys for information on creating API Keys for your ComputeNext account.

HTTP Basic Authentication is done with the Authorization header. The value of the header is
base64 encoded value with a colon-separated, concatenated string of API Key and Secret Key.
For example the API key 11111111-1111-1111-1111-111111111111 and Secret key of
22222222-2222-2222-2222-222222222222, the base64 encoding generates the following header entry:

Authorization: Basic MTExMTExMTEtMTExMS0xMTExLTExMTEtMTExMTExMTExMTExOjIyMjIyMjIyLTIyMjItMjIyMi0yMjIyLTIyMjIyMjIyMjIyMg==








Obtaining API Keys

The API Keys are currently generated by the ComputeNext Support Team.
To get a key please send an email requesting an API Key to support@computenext.com







          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Resources


Introduction

For information on how to access the API and API authorization see: Obtaining API Keys.

The resource service has a GET API that is used to query data in the store.

The GET command will retrieve the resource definitions.

With the introduction of the runcws nodejs module (see Getting Started with Workloads) it is possible to use
the runcws tool to query resources and get much of the same information as the GET API methods provide.
This interface will be preferred when working with workloads.

Resource service is based on ontological concepts [http://www-ksl.stanford.edu/kst/what-is-an-ontology.html].





The ontology of a resource service can be described by its data schema.
The schema defines which attributes are returned during a query search
and which attributes can be added to a resource during CRUD operations.
The ontology is described in various .ttl files.
The documentation below provides some examples of API calls and return values.
For a full list of all possible return elements see Resource Schema.




Resource API Methods


Query Resources

This method is used to search and discover available computing resources based on a wide variety of filtering options.

In general, query resource requests have the following formats:


HTTP GET Request:

GET /resourceQuery/query/{resourceType}




or in a browser window:

<https://cws.computenext.com/api/resourceQuery/query/{*resourceType*}>





or using runcws at the command-line in a terminal window:


>node runcws.js query {resourceType}


The current resourceType identifiers for use in
the above tools/interfaces are:


	virtualMachine

	volumeStorage

	keyPair

	securityGroup

	image

	instanceType

	softwareType

	loadBalancer - for load distribution across running instances using selectable algorithms

	package - software packages provisionable by Chef on various operating system platforms



Note: See the list of resourceTypes for instances in section Instances.

Example: To query all image resources, one can use either of the following methods:

Using an HTTPS request in a browser:


https://cws.computenext.com/api/resourceQuery/query/virtualMachine


or using the runcws command (Getting Started with Workloads) we get the following output for querying the images:

>node runcws.js query virtualMachine





Response:

[
        {
                "zone": "singapore",
                "tier": "4",
                "slaSummary": "http://www.cloudiro.com/tos.html",
                "platform": "OnApp",
                "numberOfNines": "4",
                "location": "Singapore, Singapore",
                "connectorType": "onapp.compute",
                "uri": "vx/cloudiro/singapore/9bc2d15622d3c26242a32c436a665e78",
                "Benefits": "<p>We love technology and helping our customers. Cloudiro is a team of developers, possessing relevant experience and knowledge in cloud solutions. We understand what it takes to provide the best value for money Cloud solutions for businesses. Designing simple yet intuitive user interfaces that allows you to control your account very easily is also what we believe in.</p>",
                "description": "Cloudiro Small VM with OpenSUSE 12.1 64 Bit",
                "DetailedDescription": "<p>openSUSE is a free and Linux-based operating system for your PC, Laptop or Server. You can surf the web, manage your e-mails and photos, do office work, play videos or music and have a lot of fun!<p><br/>License Information : Open License</p>",
                "name": "Cloudiro Small VM with OpenSUSE 12.1",
                "providerResourceId": "9bc2d15622d3c26242a32c436a665e78",
                "ShortDescription": "<p><strong>Minimum System Requirements:</strong></p><p><strong>CPU Count:</strong> 1 / <strong>RAM:</strong> 1GB / <strong>Storage:</strong> 10GB</p>",
                "instanceTypeName": "Small VM",
                "instanceTypeUri": "vm/cloudiro/singapore/small",
                "imageName": "OpenSUSE 12.1",
                "imageUri": "image/cloudiro/singapore/201",
                "costPerUnit": "25 USD",
                "costUnit": "per month",
                "isAvailable": "1",
                "provider": "Cloudiro",
                "region": "Singapore",
                "id": "vx_cloudiro_singapore_9bc2d15622d3c26242a32c436a665e78",
                "providerId": "cloudiro",
                "rank": "vx_cloudiro_singapore_9bc2d15622d3c26242a32c436a665e78",
                "created": "2014-11-03T11:39:14.357Z",
                "updated": "2014-11-03T11:39:14.357Z",
                "atReadLimit": 300
        }
]





Returns:

A list of resource objects that match the query parameters.

Important: This method uses pagination and the example above is the last entry in the list.


If “atReadLimit”: 200 appears as it does above then there are more results. To view more results pass in the created parameter as show below to view the next page of entries.


Example:

https://cws.computenext.com/api/resourceQuery/query/virtualMachine?from=2014-11-03T11:39:14.357Z




Retrieve Region Details

This method retrieves the list of details on all the available provider regions.

Request:

GET /api/resourceQuery/region

Or using the runcws command (see Getting Started with Workloads): >node runcws.js region

Example:

https://cws.computenext.com/api/resourceQuery/region

Or using the runcws command (see Getting Started with Workloads):

node runcws.js region





[
    {
        "benefits": "<p>* CloudSigma platform powered IaaS<br />* High reliability and high performance guarantee<br />* Carbon neutral cloud compute resources. Green initiative.<br />* 5 minute billing capability of CloudSigma platform [soon to be included in ComputeNext Marketplace]<br /><br /></p>",
        "capabilities": "https://www.computenext.com/cloudfederation/instance#Resource-Capabilities-dababfcf-0769-4dae-a248-2b1b337fedee",
        "connectorType": "ComputeNext.CloudFederation.ProviderGateway.CloudSigma.CloudSigmaProvider",
        "description": "Zurich, Switzerland",
        "detailedDescription": "<p>CloudSigma is an innovative Infrastructure-as-a-Service (IaaS) provider. We provide high availability, flexible cloud servers and cloud hosting in both Europe and the US. CloudSigma was chosen as one of the top 25 European cloud companies for 2010. The founders of CloudSigma were frustrated with the current market offerings which required users to jump through hoops to migrate their current server setups to the cloud. Further, many other IaaS offerings placed restrictions on the operating systems that could be used, the size of servers available and more; servers that disappear when stopped, storage that wasn't persistent etc. The CloudSigma product was developed to directly address these issues.</p> <p>We are 100% focused on delivering world class computing performance and service to our customers in a flexible and straightforward manner. Choosing CloudSigma as your cloud hosting partner means choosing a company that genuinely cares about its working relationships. We view our role very much a partnership, providing a solid foundation on which our customers build out their computing infrastructure and businesses over time. Having a valued partner who understands your business and is able to assist and support when needed is critical.<br/><a href='http://www.cloudsigma.com/legal/terms-of-service/' target='_blank'><strong>Provider SLA<strong></a></p>",
        "featured": "true",
        "id": "dababfcf-0769-4dae-a248-2b1b337fedee",
        "isAvailable": "1",
        "longDescription": "{\"Provider\": \"CloudSigma-Zurich\", \"Provider ID\": \"f4231561-7011-4e1b-ad0b-dc492abbccd0\", \"Platform\": \"KVM\", \"SLA Summary\": \"CloudSigma is a provider of managed hosting, colocation and managed services that extend and enhance your company's technology infrastructuree\", \"Tier\": \"3\", \"Number of Nines\": \"4\", \"Zone\": \"Zurich\"}",
        "name": "Zurich",
        "numberOfNines": "4",
        "platform": "KVM",
        "provider": "CloudSigma-Zurich",
        "providerInfoId": "f4231561-7011-4e1b-ad0b-dc492abbccd0",
        "slaSummary": "CloudSigma is a provider of managed hosting, colocation and managed services that extend and enhance your company's technology infrastructuree",
        "supportedActions": "http://www.computenext.com/cloudfederation/instance#Resource-Actions-dababfcf-0769-4dae-a248-2b1b337fedee",
        "tier": "3",
        "zone": "Zurich",
        "type": "http://www.computenext.com/cloudfederation#Region"
    },
    {
        ......
    },
    {
        ......
    }
]





Returns:

The details of every provider region




Retrieve Region Properties

This method retrieves a lists of properties that are related to region information.

Request:

GET /api/resourceQuery/region/distinct/<params>

The current parameters that this function accepts are:


	provider

	CloudPlatformType

	location

	regionUri

	SlaSummary

	ConnectorClassname

	Capabilities



Example:

https://cws.computenext.com/api/resourceQuery/region/distinct/provider

Response:

[
        "cacloud",
        "cloudoye",
        "cloudiro",
        "cloudprovider",
        "computerline",
        "gmocloud",
        "internap",
        "datacate",
        "gandi"
]








Retrieve Image Restrictions

Returns the restrictions object for an image. The restrictions describe what properties must match in order to make a valid Image+Instance choice.


	Provider - The display name of the provider the instance must be offered by

	Region - The display name of the provider region the instance must be offered by

	Platform - The name of the cloud platform the instance must be offered by (i.e OpenStack, vCloud, etc.)

	cpuCount - The minimum number of cpus needed in an instance in order to support the image (The value will be in range format. i.e. [2,] means the instanceType must have at least 2 cpu cores)

	CPUSpeed - The minimum amount of cpuSpeed (in GHZ) needed in an instance in order to support the image (The value will be in range format)

	Local storage - The minimum amount of local storage (in GB) needed in an instance in order to support the image (The value will be in range format)

	RAM - The minimum amount of ram (in GB) needed in an instance in order to support the image (The value will be in range format)



Request:

GET /api/resourceQuery/restrictions/<imageURI>

Or using the runcws command (see Getting Started with Workloads):

>node runcws.js restrictions <imageURI>





Example:

https://cws.computenext.com/api/resourceQuery/restrictions/image/enocloud/montreal/a4b1ca48-b3ce-4961-b36c-49777b9115c0

Or use the node runcws command (see Getting Started with Workloads) to retrieve restrictions for the image:

>node runcws.js restrictions /image/cloudiro/singapore/201





Response

{
        "cpuCountMin": 1,
        "cpuSpeedMin": 1,
        "localStorageMin": 20,
        "ramMin": 1,
        "cpuCount": "[1,]",
        "cpuSpeed": "[1,]",
        "localStorage": "[20,]",
        "ram": "[1,]",
        "provider": "cloudiro",
        "region": "singapore",
        "platform": "OnApp"
}








Retrieve Resource Capabilities

Returns the capabilities object associated with the resources region. The list of capabilities will either be “true” or “false”. resourceId can either be an instanceType, VM, VS, image, or a region.


	createImageSupported - True or false value determining whether or not the provider supports the creation of private images from existing virtual machines

	keypairRequired - True or false value determining whether or not the provider supports the creation of a key pair

	passwordRequired - True or false value determining whether or not the provider gives a password string for logging into a deployed virtual machine (used most commonly with Microsoft Windows images)

	securityGroupRequired - True or false value determining whether or not the provider supports the creation of a network security group

	userDataSupported - Whether user data supported for user in the provider.



Request:

GET /api/resourceQuery/capabilities/<resourceURI>

Or using the runcws command: >node runcws.js capabilities <resourceURI>

Example:

https://cws.computenext.com/api/resourceQuery/capabilities/vm/enocloud/montreal/9

Or using the runcws command (see Getting Started with Workloads):

>node runcws.js capabilities /vm/enocloud/montreal/9





Response:

{
  "createImageSupported": "false",
  "keypairRequired": "true",
  "passwordRequired": "true",
  "securityGroupRequired": "true",
  "userDataSupported": "true"
}








Resource Details

Returns the details of a resource based on its URI.

Request Body:
GET /api/resourceUri/{uri}

Or using the runcws command (see Getting Started with Workloads):

>node runcws resource <resourceURI>





Returns:

A list of details of the given resource along with information about the provider.

Example:

https://cws.computenext.com/api/resourceUri/vm/enocloud/montreal/9

Or using the runcws command (see Getting Started with Workloads):

>node runcws.js resource /vm/enocloud/montreal/9








Retrieve Resource Actions


An array of objects containing the given input, as well as a list of actions for each resource



	All actions - All the possible actions that can be performed on this resource

	Available actions - A list of valid actions that can be performed on the resource given its current state (a subset of AllActions)



Request:

POST /api/resourceQuery/action

Request Body

[
    {
        "uri":"vm/enocloud/montreal/9",
        "State":"running"
    }
]





Returns:

Given a list of resourceIds and their states, returns a list of AvailableActions and AllActions for each resourceId. See below subpages for more specific details.

Example:

https://cws.computenext.com/api/resourceQuery/action

Or using the runcws command (see Getting Started with Workloads), a JSON file provided with parameters for the resource being queried:

>node runcws.js action <JSON file>





Response:

[
     {
         "uri": "vm/enocloud/montreal/9",
         "State": "running",
         "AllActions":
          [
             {
                 "id": "create",
                 "name": "Create"
             },
             {
                 "id": "delete",
                 "name": "Delete"
             },
             {
                 "id": "stop",
                 "name": "Stop"
             },
             {
                 "id": "reboot",
                 "name": "Reboot"
             },
             {
                 "id": "createImage",
                 "name": "CreateImage"
             },
             {
                "id": "start",
                "name": "Start"
            },
            {
                "id": "delete-ip",
                "name": "DeleteIp"
            },
            {
                "id": "create-ip",
                "name": "CreateIp"
            }
      ],
     "AvailableActions":
        [
            {
                "id": "delete",
                "description": "Delete your instance",
                "name": "Delete"
            }
        ]
    }
]








Validate Resource

It is used to validate the options chosen for a configurable instance and whether it meets
the requirements of a given image.
It can also be used to validate the chosen options for a configurable volume store or
simply the existance of an image/instance resource.
The API is automatically called by the workload API when adding a VM or VS to a workload.
The configurable resource options to choose for user requirements are:


	cpuCount - number of CPUs

	RAM - amount of GB of RAM

	localStorage - amount of GB of local Storage



Request:

POST /api/resourceQuery/validate

Using the runcws command (see Getting Started with Workloads) with a supplied JSON file
containing parameters for the resource being validated, enter a command on the command-line:

>node runcws.js validate <JSON file>





The body of the request is returned as confirmation of what it received as shown in the following
example to validate an image/instance from one provider.
Because it is a configurable resource, values of ram, cpuCount, and local storage are being
verified to be within range limits and if valid, a price is returned in the response.

validate (validate resource)
options: {
  "url": "http://cws.computenext.com/api/resourceQuery/validate",
  "method": "post",
  "json": {
    "instanceTypeUri": "vm/hegerys/computenext/configurable",
    "imageUri": "image/hegerys/computenext/vapptemplate-59726d51-b021-44ca-918d-33659452b1b1",
    "ram": "2",
    "cpuCount": "2",
    "localStorage": "16"
  },
  "auth": {
   xxx
   xxx
  }
}





Returns:

Values for the chosen resource given in the request json file.
For image+instance configuration, it validates instance config choices with image restrictions.
For configurable resources with ranges to choose from, the selection is validated and if
successful, the price for that selected configuration is also returned.

Example:

https://cws.computenext.com/api/resourceQuery/validate
or using runcws:
>node runcws validate <JSON file>

Response:

{
  "ram": 2,
  "cpuCount": 2,
  "localStorage": 16,
  "cpuCountLabel": 2,
  "CurrencyCode": "USD",
  "localStorageLabel": 16,
  "ramLabel": 2,
  "totalUnitPrice": "0.095333",
  "ChargeAmountUnit": "per hour"
}








Resource Errors

Status Codes:


	400:  These errors will return a descriptive message detailing why the API call failed. It is usually caused by invalid parameters given.

	500:  Please report this error to ComputeNext support (support@computenext.com) so that we can track the cause of the problem.

	404:  The resource being searched for was not found in the system.

	403:  User does not have the correct role to access for a particular resource.











          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Resource Schema

This is a list of all the possible return elements from the various resource API calls which
can be made. The resource field in each one below indicates on what resources these
elements are present.

Tier


	description: Ranking levels from 1 - 4 according to definitions in ANSI Standard
TIA-942 Telecommunications Infrastructure Standards [http://en.wikipedia.org/wiki/TIA-942]
for Data Centers.

	resource: VM, VS, Image, Instance.



softwareType


	description: The software that is on a VM.

	resource: VM.



slaSummary


	
	description: A summary of the agreements made between customer and service providers generally regarding what kind of services to be provided, the amount and kind of support and quality, and possibly other factors as well, all can comprise the service level agreement [http://en.wikipedia.org/wiki/Service-level_agreement].  Because cloud infrastructure resources span across the cloud the service agreements are not customer based agreements but service based agreements offered by the providers.  For cloud computing, typically one would measure and monitor performance by customer consumption of resources, or customer experience.

	





	resource: VM, VS, Image, Instance.





ram


	description: The amount of RAM a VM or Instance has.

	resource: VM, Instance.



platform


	description: The URI of the image.

	resource: VM, VS, Image, Instance.



operatingSystemType


	description: The operating system that is installed on the resource.

	resource: VM, Image.



operatingSystemVersion


	description: The bit version of the OS: 32 or 64

	resource: VM, Image, Instance.



numberOfNines


	description: An availability rating for percentage of uptime for the resource.
It is related to the tier level ranking and certification is provided by various
consulting firms such as Uptime institute [http://uptimeinstitute.com].

	resource: VM, VS, Image, Instance.



Location


	description: The geographical location of the resource.

	resource: VM, VS, Instance.



localStorage


	description: The amount of RAM storage local to the virtualMachine processor

	resource: VM, instance



cpuSpeed


	description: The speed of the processor (GHz)

	resource: VM, Instance.



cpuCount


	description: The URI of the image

	resource: VM, Instance



connectorType


	description: The connector that the resource uses to communicate with the provider

	resource: VM, image, instance



Benefits


	description: The value from using the resource from the provider

	resource: VM, VS, image, instance, softwareType, package



costPerUnit


	description: The URI of the image

	resource: VM, VS, Instance, loadBalancer, package



costUnit


	description: The URI of the image

	resource: VM, VS, Instance, loadBalancer



description


	description: A brief description of the resource

	resource: VM, VS, Image, Instance, loadBalancer, softwareType, package



DetailedDescription


	description: The full body description of the resource.

	resource: VM, VS, Image, Instance, Software, loadBalancer, softwareType, package



imageId


	description: The URI of the image

	resource: VM,



imageURI


	description: The URI of the image

	resource: VM



instanceTypeId


	description: The URI of the image

	resource: VM



instanceTypeUri


	description: The URI of the image

	resource: VM



isAvailable


	description: A true/false flag indicating if the resource is available.

	resource: VM, VS, image, instance, loadBalancer



name


	description: The name of the resource

	resource: VM, VS, instance, loadBalancer, keyPair, securityGroup, softwareType, package



provider


	description: The URI of the image

	resource: VM, VS, image, instance, loadBalancer, keyPair, securityGroup



providerId


	description: The id of the provider

	resource: VM, VS, image, instance, loadBalancer, keyPair, securityGroup



rank


	description: a 32 digit hexadecimal number associated with the resource

	resource: VM, VS, image, instance, loadBalancer, package



region


	
	description: A geographical region is an area within a location where the resource provider offers an instance of the resource.  There can be multiple availability zones within a region. See  this reference on regions and availability zones [http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html].

	





	resource: VM, VS, image, instance, loadBalancer, keyPair, securityGroup





ShortDescription


	description: A “short” description of the resource

	resource: VM, VS, image, instance, softwareType, package



usageInstructions


	description: Instructions on how to use the resource

	resource: image, VM,



zone


	description: See region above.  Availability zones exist within geographical regions for a location of a resource.  They are selected for separating instances and thus ensuring a higher level of fault isolation, availability and service.

	resource: VM, VS, image, instance, loadBalancer



providerResourceId


	description: The URI of the image

	resource: image, instance, loadBalancer, VS, keyPair, securityGroup



specialOffer


	description: A flag to indicate if it is a special offer.

	resource: VS, image, instance



URI


	description: The URI [http://en.wikipedia.org/wiki/Uniform_resource_identifier] of the resource.  See Instances for ComputeNext’s use and definition for working with its resources.



	
	resource: image, instance, VS, loadBalancer, keyPair, securityGroup, package

	







size


	description: The amount or quantity of the resource.  It can be the fixed amount or over a configurable range in the case of volume storage.

	resource: VS



software


	description: Software applications or services which can be installed and configured to run on instsances of VMs.  It is not to be confused with softwareType above.  software is available in the marketplace at the same level as compute, storage and network (loadBalancers).

	resource: image



id


	description: The unique identifier for the resource.

	resource: instance, image, VM, loadBalancer, softwareType, package



operatingSystem


	description: The operating system that is on the image

	resource: Image.



category


	description: The type of software services the software package pertains to.

	resource: softwareType, package



algorithm


	description: The type of load sharing algorithm selectable for a loadBalancer.

	resource: loadBalancer



noOfNodeMandatory


	description: The minimum number of nodes required by the loadBalancer.

	resource: loadBalancer



sharedLoadBalancer


	description: A flag to indicate whether the loadBalancer is shared

	resource: loadBalancer



protocol


	description: communication protocol options for the loadBalancer: {Http port}, {SSL port}, {connect port}.

	resource: loadBalancer



logoName


	description: The name of the brand logo for a product or company

	resource: softwareType







          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Instances


Introduction

For information on how to access the API and API authorization see: Obtaining API Keys.

The instance API is a low level interface designed to allocate, monitor, control and de-allocate instances of cloud resources.

All resources have a description as defined in Cloud Resources. The instance object is an instantiation of one specific type of resource.

In the instance API, everything is considered an “instance” (not just a VM instance).
We can have an instance of a key pair, an instance of a security group, an instance of a volume store, etc.

All resources are identified by means of a URI (Universal Resource Identifier) which uniquely identifies the resource in the ComputeNext catalog.

This URI has the form <resourceType>/<provider>/<region>/<providerResourceId>.
For example: vm/hpcloud/nova/small

NOTE: By convention the URI is simply a string the ComputeNext catalog uses to uniquely identify a specific type of resource from a provider at a particular region.

The URI is always lower case to avoid case sensitivity issues.

All instances are identified by an instanceId which is a Guid.

The instance API is asynchronous. Most requests return a requestId which is a Guid.
They will return the requestId when the request has been accepted and is in-progress, but has not completed.
The user must poll with that requestId to find out the status of the request.
Eventually the request will become completed or will have failed.

Possible resource types for instantiable instances (see list of resourceType in section Resources of Cloud Resources) are -


	kp - key pair

	sg - security group

	vm - virtual machine

	vs - volume storage

	image - image

	snap - volume snapshot

	ip - floating (elastic) IP address

	lb - loadBalancer for distributing compute load across various running instances using selectable algorithms



There are basically two types of records that are persisted by the instance API in the database - request and instance records.

requests. These are records which keep track of the user requests the API.
Each request has a requestId (a Guid) and a requestStatus, plus all the parameters and results etc.

requestStatus can be -


	in-progress

	completed

	failed



If failed there will be some error information indicating the cause of the failure.
Error information will include an error code, an error message, and an error ticket (a Guid) which we can
use to track down the exact source of the error from the trace files.

instances: These are the records which keep track of the instances allocated at the provider side.
Each instance has an instanceId and an instanceStatus.
The instanceStatus is the last status we were able to retrieve from the provider side.
Values for instanceStatus are similar to (creating, created, stating, deleted. etc.) and are all lower case.

metadata. The instance API uses a URI or Guids to identify everything. Names are not used.
However, every instance can have metadata (tags) added.
This can be used to add names, descriptions, etc. and it is also used by the workload API to tag
specific instances as being part of a particular workload or transaction by adding a workloadId or a transactionId to the instance metadata.

(Note: if you want to add new metadata attributes to a VM instance them you must read the existing metadata, add your new attributes to it, and then update it.)

All request parameters and responses in the instance API are in JSON format.




Actions

In the instance API, the actions that can be performed vary by the resource type.

Actions are identified in the following format: <resourceType>.<CRUD action>.<action modifier>


	<resourceType> identifies the resource type (such as “vm”, “kp”, “sg” etc. as listed above)

	<CRUD action> is one of the create, retrieve, update or delete (CRUD) actions

	<action modifier> is an additional modifier for the CRUD action (such as “start”, “stop”, “reboot” etc.)



Actions names are lower case to avoid case sentivity issues.
Some examples are “vm.create”, “vs.update.attach”, “kp.delete”.

The <resourceType> is determined from the resource type of the resource or instance being acted upon - you do not have to specify this explicitly.

The CRUD action is determined from the type of REST action being performed -


	POST = create

	GET = retrieve

	PUT = update

	DELETE = delete



The <action modifier> is not required in many cases, but if it is required, it is specified as the action query parameter on the REST request URL ”?action=start” for example.

A full list of the resource types, the actions they support, and the parameters for those actions can be
found in Resource Types, Actions and Parameters.
Getting Started with Instances gives samples of actions on instances using runcws commands with json file parameters
with actions contained in them.




Instance Methods

Note that Basic authentication is required but is not shown here. See Authentication for
details.


Create instance from resource

Create one instance from a resource uri and parameters.
The parameters required will vary depending on the resource.

POST /api/resource/<uri>

Request Body


	metadata = some JSON to be added to the instance as metadata (tags)

	<parameters> = will vary depending on the resource type.



Example

POST /api/resource/kp/hpcloud/nova/standard
(no parameters)

Body

{
    "metadata":
    {
         "name": "HP_KP",
         "description": "Keypair Response time"
    }
}





This will create a key pair in the HPCloud Nova region.

Returns

A request JSON object.




Retrieve request

Retrieve one request.

GET /api/request/<requestId>

Example

GET /api/request/aec5fb2d-9990-4cdf-bc24-6fbc1a13cbf4

Response

[
      {
            "requestId": "3780520d-9463-4273-8d52-aa492b185168",
            "instanceId": "b2b7c744-fe31-4db4-aab2-d56c118ae9ee",
            "created": "2013-07-03T07:45:56.001Z",
            "updated": "2013-07-03T07:46:00.674Z",
            "ownerId": "ae16300f-6eba-426f-b92b-dd5626f094bf",
            "requestStatus": "completed",
            "resourceUri": "kp/hpcloud/nova/standard",
            "resourceType": "kp",
            "provider": "hpcloud",
            "region": "nova",
            "connector": "openStack.compute",
            "parameters":
            {
                "action": "kp.create",
                "instanceId": "b2b7c744-fe31-4db4-aab2-d56c118ae9ee",
                "kp_providerResourceId": "standard",
                 "zone": "nova"
            },
            "metadata":
            {
                "name": "KP2",
                "description": "my first key pair"
            },
            "results":
            {
                "providerInstanceId": "b2b7c744-fe31-4db4-aab2-d56c118ae9ee",
                "keyFingerprint": "6a:c4:4f:ba:02:0b:d4:73:93:b7:08:23:d7:d2:17:40",
                "privateKey": "<HIDDEN>",
                "publicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQDBvzE7rWC9G7+bpXwwluG08im... \n",
                "instanceStatus": "created"
            }
      }
]





Returns

A request JSON object.




Retrieve multiple requests

Retrieve multiple requests. Query parameters can be provided to return just those requests that match.

GET /api/request

Query Parameters


	requestStatus = in-progress | completed | failed

	resourceType = kp | sg | vm | vs | image | snap | ip | lb

	provider = <provider name, lower case>

	region = <region name, lower case>

	cleanup = true - if this is set, then any old requests for this user that have “requestStatus = completed” or “requestStatus = failed” will be cleaned up.



If multiple query parameters are provided then you will get the logical AND effect from these parameters.

Example

GET /api/request?resourceType=vm

Returns

A JSON array of request objects.




Create an instance from an instance

Create one instance from another instance.
At the moment this is only used for creating a new vm image instance from an existing vm instance.

POST /api/instance/<instanceId>

Example

Body

{
    "virtualMachineId": "456afec0-2c63-45d0-8436-df1815aabb5c",
    "metadata":
    {
        "name": "New IMAGE",
        "description": "my first image"
    }
}





Query Parameters

TODO:

Returns

A request JSON object.

Note: Section Getting Started with Instances has an example of creating an image from a vm instance
using runcws in sub-section Create a Private image from a Virtual Machine.




Retrieve instance

Retrieve one instance.

GET /api/instance/<instanceId>

Query Parameters


	refresh = true - refresh the instance from the provider side.



If this is not set, then the instance is fetched from the database only, and no request is made to the provider side. An instance is returned.

If this is set, then a request is returned and a request is sent to the provider side to get the latest instance status.

Returns

If refresh is specified, a request JSON object is returned.

If refresh is not specified, an instance JSON object is returned.

Note: Section Getting Started with Instances has several examples of getting an instance
using runcws.  See sub-section Create a Private image from a Virtual Machine.




Retrieve multiple instances

Retrieve multiple instances. Query parameters can be provided to return just those instances that match.

GET /api/instance

Query Parameters


	instanceStatus = creating | created | starting | started... etc.

	resourceType = kp | sg | vm | vs | image | snap | ip | lb

	provider = <provider name, lower case>

	region = <region name, lower case>

	metadata.<parameter> = query by some metadata parameter

	workloadId = workload id (Guid)

	transactionId = transaction id (Guid)



Example

GET /api/instance?workloadId=ad5a66c3-8895-4d71-b786-1d129b33326e

Response

[
    {
        "instanceId": "de3ef325-7daa-4d47-aee8-4d0391b18d9b",
        "created": "2013-10-05T12:46:12.428Z",
        "updated": "2013-10-05T12:46:39.252Z",
        "ownerId": "0cfc0576-0088-486a-8416-7dbd79f2776e",
        "resourceUri": "vm/hpcloud/nova/standard.small",
        "resourceType": "vm",
        "provider": "hpcloud",
        "region": "nova",
        "providerResourceId": "Standard.small",
        "attributes":
        {
            "providerInstanceId": 2205937,
            "password": "KAcqKeQX9XNagL5a",
            "instanceStatus": "running",
            "privateIpAddress": "10.2.225.213",
            "publicIpAddress": "15.185.233.238"
        },
        "attributeTimestamps":
        {
            "password": "2013-10-05T12:46:39.244Z",
            "instanceStatus": "2013-10-05T12:46:39.245Z",
            "privateIpAddress": "2013-10-05T12:46:39.244Z",
            "publicIpAddress": "2013-10-05T12:46:39.244Z"
        },
        "metadata":
        {
            "name": "Ubuntu",
            "description": "Virtual machine",
            "workloadId": "333617b7-5ade-43b4-88eb-45703ec1b0d4",
            "transactionId": "ab827e43-be23-4a33-8e01-11925cbe64d4"
        },
        "parameters":
        {
            "imageUri": "image/hpcloud/nova/ami-00000075",
            "keyPairId": "15086ab9-bbe6-45d5-8d68-377bd4af58c4",
            "securityGroupIds":
            [
                "639a42d8-9d76-4422-919b-bcc49db0524c"
            ],
            "vm_providerResourceId": "Standard.small",
            "zone": "nova",
            "username": "ubuntu",
            "image_providerResourceId": "ami-00000075",
            "keyPairId_providerInstanceId": "15086ab9-bbe6-45d5-8d68-377bd4af58c4",
            "securityGroupIds_providerInstanceId":[398345]
        }
    },
    {
        "instanceId": "888bd60a-e8e0-46d2-9fb9-60d0596d837a",
        "created": "2013-10-05T12:47:09.376Z",
        "updated": "2013-10-05T12:47:16.946Z",
        "ownerId": "0cfc0576-0088-486a-8416-7dbd79f2776e",
        "resourceUri": "vs/hpcloud/nova/standard.10",
        "resourceType": "vs",
        "provider": "hpcloud",
        "region": "nova",
        "providerResourceId": "standard",
        "attributes":
        {
            "providerInstanceId": 675435,
            "instanceStatus": "attached",
            "virtualMachineId": "de3ef325-7daa-4d47-aee8-4d0391b18d9b",
            "virtualMachineId_providerInstanceId": 2205937
        },
        "attributeTimestamps":
        {
            "instanceStatus": "2013-10-05T12:47:16.936Z",
            "virtualMachineId": "2013-10-05T12:47:16.936Z",
            "virtualMachineId_providerInstanceId": "2013-10-05T12:47:16.937Z"
        },
        "metadata":
        {
            "description": "My first volume storage",
            "name": "vs1",
            "workloadId": "333617b7-5ade-43b4-88eb-45703ec1b0d4",
            "transactionId": "ab827e43-be23-4a33-8e01-11925cbe64d4"
        },
        "parameters":
        {
            "sizeInGBytes": 50,
            "attachTarget": "Ubuntu",
            "deviceName": "/dev/vdc",
            "virtualMachineId": "de3ef325-7daa-4d47-aee8-4d0391b18d9b",
            "vs_providerResourceId": "standard",
            "zone": "nova",
            "virtualMachineId_providerInstanceId": 2205937
        }
    }
]





Returns

A JSON array of instance objects.

Note: Section Getting Started with Instances has an example of listing multiple instances
using runcws in the sub-section Getting Started With Instances.




Update instance

PUT /api/instance/<instanceId>

Request Body


	metadata = some JSON to be added to the instance as metadata (tags)

	<parameters> = will vary depending on the resource type and the action.



Query Parameters

action = <some action>. Valid actions depend on the resource type.

If no action parameter is provided then default actions are as follows -


	POST = create

	PUT = update

	GET = retrieve

	DELETE = delete



Example

PUT /api/instance/ad5a66c3-8895-4d71-b786-1d129b33326e?action=stop

Response

[
    {
        "requestId": "27aac883-5444-4db0-acf6-795f3a9aec00",
        "instanceId": "456afec0-2c63-45d0-8436-df1815aabb5c",
        "created": "2013-10-07T09:30:13.854Z",
        "updated": "2013-10-07T09:30:14.588Z",
        "ownerId": "0cfc0576-0088-486a-8416-7dbd79f2776e",
        "requestStatus": "completed",
        "resourceUri": "vm/lunacloud/eu-west/xsmall",
        "resourceType": "vm",
        "provider": "lunacloud",
        "region": "eu-west",
        "connector": "lunaCloud.compute",
        "parameters":
        {
            "uri": "vm/lunacloud/eu-west/xsmall",
            "imageUri": "image/lunacloud/eu-west/ubuntu-12.04-x86_64",
            "providerInstanceId": "456afec0-2c63-45d0-8436-df1815aabb5c",
            "action": "vm.update.stop",
            "instanceId": "456afec0-2c63-45d0-8436-df1815aabb5c",
            "vm_providerResourceId": "{\"cpuCount\":\"1\",\"cpupower\":\"1500\" ...}
            "zone": "EU-West"
        },
        "metadata":
        {
            "name": "VM10",
            "description": "my first virtual machine"
        },
        "results":
        {
            "providerInstanceId": "456afec0-2c63-45d0-8436-df1815aabb5c",
            "instanceStatus": "stopping"
        }
    }
]





Returns

A request JSON object.




Update instance metadata

Updates the metadata field of an instance. Users will pass in a piece of JSON to update the instance’s metadata with.

PUT /api/instance/<instanceId>

Request Body


	metadata = a JSON file to be added to the instance as metadata (tags)



Metadata Parameters

Common parameters of a instance in an active workload:


	name = The unique name that the system uses to identify a VM, should not be modified

	description = This attribute is used for VM name, as it appears in your workload. Can be updated by user.

	monitoringEnabled = Tells you if the ComputeNext monitoring service has been installed and enabled on the VM

	workloadId = The Id of an existing workload that the VM is attached to.

	transactionId = Do not modify this, include it in any json code you are tyring to pass through.



Users can define their one attribute in the form of “newattribute” : “testnewattibute” but must pass all previous attributes to retain them.

Example

PUT /api/instance/ad5a66c3-8895-4d71-b786-1d129b33326e

Content

{
   "metadata": {
                    "name": "CNWE734D_3504_E6F8_FA5A_41AA96E36E08",
                    "description": "My new name",
                    "monitoringEnabled": false,
                    "workloadId": "b6d5ed5a-29e7-4455-a95c-296072c2be1d",
                    "transactionId": "d40fe39c-855f-49a1-8341-5c0952b179c9",
                    "newattribute" : "testnewattibute"
            }
    }





Returns

A request JSON object.




Delete instance

Delete one instance.
Note that “deleting an instance” means deleting (de-provisioning) the instance from the provider side.
The instance record is not actually deleted from our database.
The instance will transition through a “deleting” state and hopefully into a “deleted” state if all goes well.

DELETE /api/instance/<instanceId>

Example

DELETE /api/instance/ad5a66c3-8895-4d71-b786-1d129b33326e

Returns

A request JSON object.









          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Resource Types, Actions and Parameters

This section gives descriptions of the instance schema for various resource instances.  It describes
methods, actions, and method parameters.
Please refer to Instances for details on instances of various resources and examples using HTTP
requests.
Refer to Getting Started with Instances for examples of actions working with instances using runcws.


Resource Types


	Virtual Machine (vm)

	Key Pair (kp)

	Security Group (sg)

	Volume Storage (vs)

	Volume Snapshot (snap)

	Floating IP Address (ip)

	Image (image)






Virtual Machine (vm) Instance Schema


Method: vm.create



	Description:

	Create virtual machine.

	Parameters:

	imageUri


	description: The URI of the image

	type: string

	required: true

	restrictions: minLength = 8, maxLength = 128



keyPairId


	description: The instance ID of the key pair

	type: string

	required: false

	restrictions: minLength = 36, maxLength = 36



securityGroupIds


	description: An array of security group instance ID’s

	type: array

	required: false

	restrictions: minItems = 1, maxItems = 5



userData


	description: User data for the virtual machine

	type: string

	required: false

	restrictions: minLength = 2, maxLength = 4096



zone


	description: The zone for the virtual machine

	type: string

	required: false

	restrictions: minLength = 2, maxLength = 32



cpuCount


	description: The CPU count

	type: integer

	required: false

	restrictions: minimum = 1



cpuSpeed


	description: The CPU speed in GHz

	type: number

	required: false

	restrictions: none



localStorage


	description: Local storage in GBytes

	type: number

	required: false

	restrictions: none



ram


	description: RAM in MBytes

	type: number

	required: false

	restrictions: none













Method: vm.create.image



	Description:

	Create an image from a virtual machine.

	Parameters:

	No parameters









Method: vm.retrieve



	Description:

	Retrieve virtual machine.

	Parameters:

	No parameters









Method: vm.retrieve.password



	Description:

	Retrieve virtual machine password.

	Parameters:

	No parameters









Method: vm.update.password



	Description:

	Update password on a virtual machine.

	Parameters:

	password


	description: Password

	type: string

	required: true

	restrictions: minLength = 5, maxLength = 256













Method: vm.update.start



	Description:

	Start virtual machine.

	Parameters:

	No parameters









Method: vm.update.stop



	Description:

	Stop virtual machine.

	Parameters:

	No parameters









Method: vm.update.reboot



	Description:

	Reboot virtual machine.

	Parameters:

	rebootType


	description: Reboot type - hard or soft

	type: string

	required: false

	restrictions: minLength = undefined, maxLength = undefined













Method: vm.delete



	Description:

	Delete virtual machine.

	Parameters:

	No parameters











Key Pair (kp) Instance Schema


Method: kp.create



	Description:

	Create key pair.

	Parameters:

	No parameters









Method: kp.retrieve



	Decription:

	Retrieve key pair.

	Parameters:

	No parameters









Method: kp.delete



	Description:

	Delete key pair.

	Parameters:

	No parameters











Security Group (sg) Instance Schema


Method: sg.create



	Description:

	Create security group.

	Parameters:

	No parameters









Method: sg.retrieve



	Description:

	Retrieve security group.

	Parameters:

	No parameters









Method: sg.update.add-access



	Description:

	Add ports to security group.



Parameters:


rules


	description: The security group rules

	type: array

	required: true

	restrictions: minItems = 1, maxItems = 20












Method: sg.update.remove-access



	Description:

	Remove ports from security group.

	Parameters:

	ruleIndexes


	description: The indices of the security group rules that should be removed

	type: array

	required: true

	restrictions: minItems = 1, maxItems = 20













Method: sg.delete



	Description:

	Delete security group.

	Parameters:

	No parameters











Volume Storage (vs) Instance Schema


Method: vs.create



	Description:

	Create volume storage.

	Parameters:

	sizeInGBytes


	description: Volume size in GBytes

	type: number

	required: true

	restrictions: none



zone


	description: The zone for the virtual machine

	type: string

	required: false

	restrictions: minLength = 2, maxLength = 32



virtualMachineId


	description: The instance id of the virtual machine

	type: string

	required: false

	restrictions: minLength = 36, maxLength = 36



deviceName


	description: The device name for the attached volume

	type: string

	required: false

	restrictions: minLength = 2, maxLength = 128













Method: vs.retrieve



	Description:

	Retrieve volume storage.

	Parameters:

	No parameters









Method: vs.update.attach



	Description:

	Attach volume storage to a virtual machine.

	Parameters:

	virtualMachineId


	description: The instance id of the virtual machine

	type: string

	required: true

	restrictions: minLength = 36, maxLength = 36



deviceName


	description: The device name for the attached volume

	type: string

	required: true

	restrictions: minLength = 2, maxLength = 128













Method: vs.update.detach



	Description:

	Detach volume storage from a virtual machine.

	Parameters:

	No parameters









Method: vs.delete



	Description:

	Delete volume storage.

	Parameters:

	No parameters











Volume Snapshot (snap) Instance Schema


Method: snap.create



	Description:

	Create volume snapshot from volume storage.



Parameters:

volumeStorageId


	description: MISSING

	type: string

	required: true

	restrictions: minLength = 36, maxLength = 36









Method: snap.retrieve



	Description:

	Retrieve volume snapshot.

	Parameters:

	No parameters









Method: snap.delete



	Description:

	Delete volume sanapshot.

	Parmeters:

	No parameters











Floating IP Address (ip) Instance Schema


Method: ip.create



	Description:

	Create floating ip address.

	Providers:

	No parameters









Method: ip.retrieve



	Description:

	Retrieve floating ip address.

	Parameters:

	No parameters









Method: ip.update.add



	Description:

	Add a floating ip address to a virtual machine.

	Parameters:

	virtualMachineId


	description: The instance id of the virtual machine

	type: string

	required: true

	restrictions: minLength = 36, maxLength = 36













Method: ip.update.remove



	Description:

	Remove a floating ip address from a virtual machine.

	Parameters:

	No parameters









Method: ip.delete



	Description:

	Delete floating ip address.

	Parameters:

	No parameters











Image (image) Instance Schema


Method: image.create



	Description:

	Create an image from a virtual machine.



Parameters:


virtualMachineId


	description: The instance id of the virtual machine

	type: string

	required: true

	restrictions: minLength = 36, maxLength = 36












Method: image.retrieve



	Description:

	Retrieve image.

	Parameters:

	No parameters









Method: image.delete



	Description:

	Delete image.

	Parameters:

	No parameters














          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Workloads


Introduction

For information on how to access the API and API authorization see: Obtaining API Keys.

The workload API provides an API by which users can create, edit and manage workloads, and activate and deactivate them to create (allocate) or
delete (de-allocate) sets of cloud resources.
It also provides methods for monitoring and controlling the activation and deactivation process.

All workloads are described by means of a JSON document. This document contains workload elements, which can be added and deleted from the workload.
Each workload has a name, which must be unique for the user.

Note: Names are made unique by lower casing and removing all spaces. So “VM 1” will be made unique as “vm1” which means “Vm 1” and “vM1” will be considered the same.

The workload CRUD API methods are used for editing the workload, including adding and deleting workload elements.

Once the workload is defined using the CRUD methods, it can be activated.
Activation (or deactivation) is a two step process. First, the workload is planned.
The planning process checks that when this workload is activated, the user will not exceed their limits for resource instances.
It also checks the availability of resources at the provider, which will indicate the likelihood that this activation process will succeed or not.
The output of the planning process is the workload plan, which is a set of workload steps that will need to be carried out to activate the workload.


	There are two types of plan. A plan for activation, and a plan for deactivation.

	The plan is transient, because it depends on the current state of the users instances.

	The plan is not stored in the database, but it is returned as part of the workload.

	The plan is valid for a limited time, it will expire.

	The plan will contain both serial and parallel steps, which indicate the sequence in which the steps will be executed.



The planning process considers the state of the “running workload”.
The “running workload” is the set of instances that are running that were created for this workload.
These instances are from the instance service and are tagged with the workloadId from the current workload in their metadata (a collection).
To access these instances (and their status), you use the instance API, not the workload API.

During the planning process, the workload definition is checked against the running workload.
For activation, if a workload element is defined in the workload definition that is not in the running workload, then the workload plan will create that instance.
If a workload element was deleted from the workload definition, but is in the running workload, then the workload plan will delete that instance.
So the activation plan will always try to get the running workload to match the workload definition.
For deactivation, the running workload is checked and the workload plan deletes all elements in the running workload.

If the plan looks good, you can then go ahead and execute the workload.

The steps for workload activation are:


	Create any key pairs.

	Create any security groups.

	Create requested VMs.

	Create requested VS.

	Attach any VS to the VM’s.



A transaction is the process of activating or deactivating the workload.
Once that activation or deactivation has occurred, there is no longer a transaction.
The transaction is only used for monitoring the activation or deactivation process and nothing else.
We keep the last transaction available for each workload, but only the last transaction, and once the activation or deactivation process (the transaction) has
completed (or failed) it is no longer useful - except for knowing what happened.

In general, any errors will be returned either directly as JSON from the REST call (code, message, ticket) or in some cases error information might be embedded
into the workload JSON itself.

Once created, workloads have a unique workloadId (Guid), but workload elements are identified only by name within the scope of a workload, they do not have an id.
Each workload element name must be unique within the scope of the workload.

To see an example of the api in action see: Getting Started with Workloads.




Workload Methods


Create workload

Create a workload.

POST /workload

Request Body

The workload JSON.

Notes

The workload JSON is validated against a basic schema defined here: Workload Schema.

The schema includes: name, description, metadata, parameters and elements (an array). Metadata here is metadata for the workload and can be any valid JSON.

Each workload element is validated against a basic schema defined here: Workload Element Schema.

For the schema validation, most properties are optional, but if they are provided, they must match the schema.
Properties in the JSON which are not defined in the schema are ignored.

For create, the workload name is required. Must be unique for this user.

A user is limited in the maximum number of workloads they can have at one time. This is defined by the “user limits” for that user.

Example

POST /workload

Returns

The workload JSON. Will include the workloadId.




Clone workload

Clone the workload. This creates a copy of the original workload with a different name and a different workloadId.

POST /workload/clone/<workloadId>

Request Body


	name - required - the name for the new (cloned) workload. Must be unique for this user.



Example

POST /workload/ad5a66c3-8895-4d71-b786-1d129b33326e

Returns

The workload JSON. Will include the workloadId.




Retrieve workload

Retrieve one workload.

GET /workload/<workloadId>

Returns

The workload JSON. Will include the workloadId.




Retrieve multiple workloads

Retrieve multiple workloads.

GET /workload

Query Parameters


	name - optional. If you want to retrieve a workload by name, you can specify the workload name here



Note that even though only one workload will be returned (because workload names are unique) an array will always be returned from this method.

Returns

An array of workloads.

If there is only one workload returned then the full JSON for the workload will be returned.

If there is more than one workload returned then only limited information for the workloads will be returned (no elements, no parameters, no plan, etc.)




Update workload

Update the workload.

PUT /workload/<workloadId>

Request Body

The workload JSON.

Notes

The following properties can be updated by this method: name, description, parameters, metadata. They are replaced in their entirety.
To update elements use the element CRUD methods below.
Updates need to conform to the same schema requirements as the create above.
If the name is changed, it must be unique for this user.

A workload cannot be updated while workload planning or execution is in progress.

When a workload is updated, any existing plan is invalid and hence is removed.

Example

PUT /workload/ad5a66c3-8895-4d71-b786-1d129b33326e

Returns

The workload JSON. Will include the workloadId.




Delete workload

Delete a workload.

DELETE /workload/<workloadId>

Notes

A workload cannot be deleted while workload planning or execution is in progress.

Currently you can delete the workload even if it has running instances.
This will cause those running instances to effectively be “orphaned” as they will no longer belong to a workload.
So before you delete a workload you should check whether it has running instances.

Example

DELETE /workload/ad5a66c3-8895-4d71-b786-1d129b33326e

Returns

{ “deleted”: true } (if the workload was sucessfully deleted)


	or -



{ “deleted”: false } (if the workload was already deleted)




Create/Update workload element

Create or update a workload element.

PUT /workload/<workloadId>/element

Request Body

The workload element JSON.

Notes

A workload element cannot be created or updated while workload planning or execution is in progress.

When a workload is updated, any existing plan is invalid and hence is removed.

The workload element JSON is validated against the schema defined here: Workload Element Schema.

The schema includes: name, uri, parameters, and metadata.
Metadata here is metadata for the workload element and can be any valid JSON. That metadata will be attached to the instance when it is created.
name and uri are required. All other parameters are optional.

Returns

The workload element JSON.




Delete workload element

Delete a workload element from the workload.

DELETE /workload/<workloadId>/element

Request Body

The workload element JSON. The only required property is name (to identify the workload element that is to be deleted).

Notes

A workload element cannot be deleted while workload planning or execution is in progress.

When a workload is updated (in this case by having an element deleted) any existing plan is invalid and hence is removed.

Returns

The workload element JSON.




Plan workload

Generate the workload plan. The plan can be for activation or deactivation.

PUT /workload/<workloadId>/plan

Query Parameters


	action = activate | deactivate



Example

PUT /workload/ad5a66c3-8895-4d71-b786-1d129b33326e/plan?action=activate

Returns

The workload element JSON. This will include the plan. The plan property starts with serial.




Execute workload plan

Execute the workload plan.

PUT /workload/<workloadId>/execute

Notes

The execute will fail if the workloadStatus is in-progress.

Returns:

{
        "workloadStatus": "in-progress",
        "action": "activate",
        "transactionId": "<the transaction id>"
}








Retrieve transaction steps

Retrieve transaction steps.

GET /transaction/<transactionId>/steps

Query Parameters


	begin = the beginning Log Sequence Number (LSN). Optional. If omitted then begin = 0.

	end = the ending LSN. Optional. If omitted then end = 10,000.



Notes

When a workload is executed, the results of all the steps in the workload plan are logged to a transaction log.
Each entry in the log has a “Log Sequence Number” or LSN.
Some of those log entries are relevant to the progress of the step and some are not.
To monitor the progress of the step we are mostly interested in when the step started (step status = in-progress) and when it has
finished (step status = completed or step status = failed).
The begin and end query parameters can be used to limit the number of records returned.
Note that once a step with a specific LSN has been returned it will never change, so the best way to poll with this method is to
advance the begin LSN to the LSN of the last step that was returned in the previous call to this method.

Result

An array of log entries. These have a stepId so they can be correlated to the steps in the workload plan.

Each log entry is:

{
        "lsn": 456,
        "stepId": "<the unique step id - matches the plan>",
        "timestamp": "<UTC timestamp>",
        "status": "in-progress | completed | failed",
        "reason": "<failure reason if status = failed>",
        "elapsedTimeInSeconds": "<elapsed time in seconds for the workload step>"
}








Retrieve transaction errors

Retrieve transaction errors.

GET /transaction/<transactionId>/errors

Notes

In the workload API, errors from the provider side are not necessarily fatal.
The workload API implements retries and retry delays.
So it may be that an error was received from a provider, but that the operation was retried and succeeded the second time.
This method can be used to see details for all errors that occur during the workload execution.

Returns

An array of log entries. These have a stepId so they can be correlated to the steps in the workload plan.

Each log entry is:

{
        "lsn": 456,
        "stepId": "<the unique step id - matches the plan>",
        "timestamp": "<UTC timestamp>",
        "code": "<error code>",
        "message": "<error message>",
        "ticket": "<error ticket>"
}








Retrieve transaction status

Retrieve transaction status.

GET /transaction/<transactionId>/status

Returns:

{
        "transactionId": "<the transaction id>",
        "workloadId": "<the workload id>",
        "status": <the transaction status: in-progress | completed | failed>",
        "reason": <failure reason if status = failed>",
        "stepId": <the stepId of the step that failed, if status = failed>",
        "started": "<UTC timestamp - start time>",
        "ended": "<UTC timestamp - end time>",
        "elapsedTimeInSeconds": "<elapsed time in seconds for transaction>"
}








Cancel transaction

Cancel a transaction that is currently in-progress.

PUT /transaction/<transactionId>/cancel

Returns:

{
  "transactionId": "<the transaction id>",
  "workloadId": "<the workload id>",
  "action": "cancel",
  "status": "in-progress"
}













          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Workload Schema

Workloads are a collection of workload elements. The workload elements may specify a virtual machine (vm) or volume storage (vs).

This section specifies the input schema for a workload.

Note that additional properties will be added to the workload by the workload API. These are explained here: Getting Started with Workloads


name

The workload name. Workload names must be unique (when converted to lower case with no whitespace) for a user.


	type: string

	required for create: true

	required for update: false

	restrictions: minLength = 1, maxLength = 64






description

The workload description.


	type: string

	required: false

	restrictions: minLength = 1, maxLength = 128






metadata

The workload metadata.
The metadata is a set of key/value pairs, where the key is a string and the value may be a string or a JSON object.


	type: object

	required: false






elements

The workload elements. These describe what the workload should contain. The order of the workload elements is not significant.


	type: array

	required: false

	restrictions: minItems = 1, maxItems = 100



See: Workload Element Schema







          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Workload Element Schema


name

The workload element name. Workload element names must be unique (when converted to lower case with no whitespace) within a workload.


	type: string

	required: true

	restrictions: minLength = 1, maxLength = 64






uri

The resource URI. This identifies the resource type of the workload element (in the ComputeNext catalog).

Currently only two resource types are allowed for workload elements: vm and vs.


	type: string

	required: true

	restrictions: minLength = 1, maxLength = 256






parameters

Parameters for the workload element.


	type: object

	required: false



The parameters vary by the resource type.

In general the parameters that can be used for the equivalent “create” action can be specified here.

A virtual machine (vm) workload element can use the parameters allowed for vm.create

A volume storage (vs) workload element can use the parameters allowed for vs.create

See Resource Types, Actions and Parameters

However, there are some additional parameters available for the workload element that allow instances to be specified by name, not instance ID.

Virtual Machine (vm)


keyPair

The key pair name that should be used for this VM. Maps to keyPairId.




securityGroups

An array of security group names to be used for this VM. Maps to securityGroupIds.

Volume Storage (vs)




attachTarget

The name of the VM that this VS should be attached to. Maps to virtualMachineId.






metadata

The workload element metadata.
The metadata is a set of key/value pairs, where the key is a string and the value may be a string or a JSON object.
The workload element metadata will be added to the instance metadata when the instance is created.


	type: object

	required: false



There are several reserved metadata key names used by the workload API


	name (the workload element name)

	workloadId (the workload ID)

	transactionId (the transaction ID)









          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Getting Started with Instances

Please read Getting Started with Workloads first, which explains how to install and setup the runcws command
line tool used for the examples in this section.
You should also have read and understood Instances with background information about instances
before proceeding to do this section.

The instance API is a lower level API used for individual instances.

The workload API is a higher level API used for collections of instances.
The workload API calls the instance API.

Note: To create any instances you must first enter your payment information into the ComputeNext website.
If you do not have payment information you will receive a “403 Forbidden” error.

In all of the following tutorial examples, sample json files with parameter data are taken from the demo
subdirectory.


Create A Key Pair

This example will show how to create (and delete) a key pair (kp) using runcws.

Create the instance:

>node runcws.js createi demo\kp.create.json
createi (create instance from resource)
options: {
  "url": "http://cws.computenext.com/api/resource/kp/hpcloud/nova/standard",
  "method": "post",
  "json": {
        "metadata": {
          "name": "KP1",
          "description": "my first key pair"
        }
  },
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current requestId: 3ebea4a3-0b60-49a4-b0b1-701e6acb54b8
----- RESULT -----
{
  "requestId": "3ebea4a3-0b60-49a4-b0b1-701e6acb54b8",
  "created": "2013-12-20T01:16:15.041Z",
  "updated": "2013-12-20T01:16:15.041Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "requestStatus": "in-progress",
  "resourceUri": "kp/hpcloud/nova/standard",
  "resourceType": "kp",
  "provider": "hpcloud",
  "region": "nova",
  "connector": "openStack.compute",
  "parameters": {
        "action": "kp.create",
        "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "kp_providerResourceId": "standard",
        "zone": "nova"
  },
  "metadata": {
        "name": "KP1",
        "description": "my first key pair"
  }
}





Get the request:

>node runcws.js getr
getr (retrieve request)
options: {
  "url": "http://cws.computenext.com/api/request/3ebea4a3-0b60-49a4-b0b1-701e6acb54b8",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current instanceId: c4c2ddc6-9366-41c9-a813-9abd88b924b7
----- RESULT -----
[
  {
        "requestId": "3ebea4a3-0b60-49a4-b0b1-701e6acb54b8",
        "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "created": "2013-12-20T01:16:15.041Z",
        "updated": "2013-12-20T01:16:15.942Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "requestStatus": "completed",
        "resourceUri": "kp/hpcloud/nova/standard",
        "resourceType": "kp",
        "provider": "hpcloud",
        "region": "nova",
        "connector": "openStack.compute",
        "parameters": {
          "action": "kp.create",
          "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
          "kp_providerResourceId": "standard",
          "zone": "nova"
        },
        "metadata": {
          "name": "KP1",
          "description": "my first key pair"
        },
        "results": {
          "providerInstanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
          "keyFingerprint": "a6:0d:bd:20:56:0d:a7:47:b4:01:a1:65:10:dd:58:5f",
          "privateKey": "<HIDDEN>",
          "publicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQDV4ijOycM6VmQZoCQCu74MkonLYKWCr0976ZlU8weJcdhxqB20hy6ylLzj59qS3MNxRkUXNeMmmvXEpR/bDSC3ZTS4EwLOmSf6tbPhSg1trv7C0iwsfvJB/TiI
QsDo+e5R0M+6LBTTxjEn/fQUZejDIaIkWJXhRR4W80mzevifrQ== \n",
          "instanceStatus": "created"
        }
  }
]





The requestStatus is completed.

Note that most of the time a request will complete quickly with either completed or failed status.
The failed status will include an error message and error code in the response.
If you see a request that seems to be stuck for some time with the in-progress status then it is
possible that the response has been lost.
This is not likely to occur in normal operation, but could possibly occur under some error conditions.
If this occurs then try the original request again.

Note that when the request is returned secure properties (the privateKey) are hidden.

Get the instance:

>node runcws.js geti
geti (retrieve instance)
options: {
  "url": "http://cws.computenext.com/api/instance/c4c2ddc6-9366-41c9-a813-9abd88b924b7",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
  "created": "2013-12-20T01:16:15.938Z",
  "updated": "2013-12-20T01:16:15.938Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "resourceUri": "kp/hpcloud/nova/standard",
  "resourceType": "kp",
  "provider": "hpcloud",
  "region": "nova",
  "attributes": {
        "providerInstanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "publicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQDV4ijOycM6VmQZoCQCu74MkonLYKWCr0976ZlU8weJcdhxqB20hy6ylLzj59qS3MNxRkUXNeMmmvXEpR/bDSC3ZTS4EwLOmSf6tbPhSg1trv7C0iwsfvJB/TiIQs
Do+e5R0M+6LBTTxjEn/fQUZejDIaIkWJXhRR4W80mzevifrQ== \n",
        "privateKey": "-----BEGIN RSA PRIVATE KEY-----\nMIICXQIBAAKBgQDV4ijOycM6VmQZoCQCu74MkonLYKWCr0976ZlU8weJcdhxqB20\nhy6ylLzj59qS3MNxRkUXNeMmmvXEpR/bDSC3ZTS4EwLOmSf6tbPhSg1trv7C0i
ws\nfvJB/TiIQsDo+e5R0M+6LBTTxjEn/fQUZejDIaIkWJXhRR4W80mzevifrQIDAQAB\nAoGAVqq51nEzRqRTE38smF7y9605YMvcxUO8dX2GwEFqQGt9RTDWOJy+c2aJ09/T\nVcdW+sN6o5kWXkJUbEZszhpXsrp5Nn7pMBV3TwLhJjXW
3H2v/RndLu2Sj/6ar6Yp\ncYR8jyOIwQIATBn7XWoayeY6EeAu/FU9KFqtTWYQUtXG+YECQQD9Pdi1IQstqzbf\nE+TjQ1WBiBM3fEIbaQzNhuDeVDo2K+Wh3dzAIxtjBB5hp21V62Jw8HENqE5JA5cA\nOf06t20pAkEA2DaQeMLi77ctx7
0+FDja3KMeaGvjWCV591T48EVugUzvDiGY1dsk\ncv2dUeBqILmgcl9yZN1TNUWl0k6r+Ulq5QJBAJwfC8GmzHBsNFjUt/BPq6A+lrJH\nPa4OVmFCvND0FisdZuUilRwyyIiDmoNTp7kncznzUY886n5i4y21kmMnf/kCQQDJ\nP5if3v6u
k/k3xqzm07jbz7T5CxsUq+Vn0x7XPjlKfxqwM5N30z+NDQWG9XSzOzTd\n4Huw6NWPa2GabIHkSnMFAkANjrBz7Qp9l7FJVGOn29j2yWyP70tdvH3JiEhZubrI\nRS8YpU58USgow0uHOQABbnLF+U317/jHOtpJWuiUVJpl\n-----END R
SA PRIVATE KEY-----\n",
        "keyFingerprint": "a6:0d:bd:20:56:0d:a7:47:b4:01:a1:65:10:dd:58:5f",
        "instanceStatus": "created",
        "transientStatus": false
  },
  "attributeTimestamps": {
        "instanceStatus": "2013-12-20T01:16:15.936Z"
  },
  "metadata": {
        "name": "KP1",
        "description": "my first key pair"
  },
  "parameters": {
        "kp_providerResourceId": "standard",
        "zone": "nova"
  }
}





The instanceStatus is created.

List the requests:

>node runcws.js listr
listr (retrieve multiple requests)
options: {
  "url": "http://cws.computenext.com/api/request?cleanup=true",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
[]





No requests - the request has been cleaned-up because it was completed.

List instances:

>node runcws.js listi
listi (retrieve multiple instances)
options: {
  "url": "http://cws.computenext.com/api/instance?cleanup=true",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
        "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "created": "2013-12-20T01:16:15.938Z",
        "updated": "2013-12-20T01:16:15.938Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "resourceUri": "kp/hpcloud/nova/standard",
        "resourceType": "kp",
        "provider": "hpcloud",
        "region": "nova",
        "attributes": {
          "providerInstanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
          "publicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQDV4ijOycM6VmQZoCQCu74MkonLYKWCr0976ZlU8weJcdhxqB20hy6ylLzj59qS3MNxRkUXNeMmmvXEpR/bDSC3ZTS4EwLOmSf6tbPhSg1trv7C0iwsfvJB/TiI
QsDo+e5R0M+6LBTTxjEn/fQUZejDIaIkWJXhRR4W80mzevifrQ== \n",
          "privateKey": "-----BEGIN RSA PRIVATE KEY-----\nMIICXQIBAAKBgQDV4ijOycM6VmQZoCQCu74MkonLYKWCr0976ZlU8weJcdhxqB20\nhy6ylLzj59qS3MNxRkUXNeMmmvXEpR/bDSC3ZTS4EwLOmSf6tbPhSg1trv7C
0iws\nfvJB/TiIQsDo+e5R0M+6LBTTxjEn/fQUZejDIaIkWJXhRR4W80mzevifrQIDAQAB\nAoGAVqq51nEzRqRTE38smF7y9605YMvcxUO8dX2GwEFqQGt9RTDWOJy+c2aJ09/T\nVcdW+sN6o5kWXkJUbEZszhpXsrp5Nn7pMBV3TwLhJj
XW3H2v/RndLu2Sj/6ar6Yp\ncYR8jyOIwQIATBn7XWoayeY6EeAu/FU9KFqtTWYQUtXG+YECQQD9Pdi1IQstqzbf\nE+TjQ1WBiBM3fEIbaQzNhuDeVDo2K+Wh3dzAIxtjBB5hp21V62Jw8HENqE5JA5cA\nOf06t20pAkEA2DaQeMLi77ct
x70+FDja3KMeaGvjWCV591T48EVugUzvDiGY1dsk\ncv2dUeBqILmgcl9yZN1TNUWl0k6r+Ulq5QJBAJwfC8GmzHBsNFjUt/BPq6A+lrJH\nPa4OVmFCvND0FisdZuUilRwyyIiDmoNTp7kncznzUY886n5i4y21kmMnf/kCQQDJ\nP5if3v
6uk/k3xqzm07jbz7T5CxsUq+Vn0x7XPjlKfxqwM5N30z+NDQWG9XSzOzTd\n4Huw6NWPa2GabIHkSnMFAkANjrBz7Qp9l7FJVGOn29j2yWyP70tdvH3JiEhZubrI\nRS8YpU58USgow0uHOQABbnLF+U317/jHOtpJWuiUVJpl\n-----END
 RSA PRIVATE KEY-----\n",
          "keyFingerprint": "a6:0d:bd:20:56:0d:a7:47:b4:01:a1:65:10:dd:58:5f",
          "instanceStatus": "created",
          "transientStatus": false
        },
        "attributeTimestamps": {
          "instanceStatus": "2013-12-20T01:16:15.936Z"
        },
        "metadata": {
          "name": "KP1",
          "description": "my first key pair"
        },
        "parameters": {
          "kp_providerResourceId": "standard",
          "zone": "nova"
        }
  }
]





Delete the instance:

>node runcws.js deletei
deletei (delete instance)
options: {
  "url": "http://cws.computenext.com/api/instance/c4c2ddc6-9366-41c9-a813-9abd88b924b7",
  "method": "delete",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current requestId: efa6371a-634b-4073-83ff-f694e3d6fc41
----- RESULT -----
{
  "requestId": "efa6371a-634b-4073-83ff-f694e3d6fc41",
  "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
  "created": "2013-12-20T01:23:26.909Z",
  "updated": "2013-12-20T01:23:26.909Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "requestStatus": "in-progress",
  "resourceUri": "kp/hpcloud/nova/standard",
  "resourceType": "kp",
  "provider": "hpcloud",
  "region": "nova",
  "connector": "openStack.compute",
  "parameters": {
        "providerInstanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "action": "kp.delete",
        "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "kp_providerResourceId": "standard",
        "zone": "nova"
  }
}





Get the request:

>node runcws.js getr
getr (retrieve request)
options: {
  "url": "http://cws.computenext.com/api/request/efa6371a-634b-4073-83ff-f694e3d6fc41",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
        "requestId": "efa6371a-634b-4073-83ff-f694e3d6fc41",
        "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "created": "2013-12-20T01:23:26.909Z",
        "updated": "2013-12-20T01:23:27.409Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "requestStatus": "completed",
        "resourceUri": "kp/hpcloud/nova/standard",
        "resourceType": "kp",
        "provider": "hpcloud",
        "region": "nova",
        "connector": "openStack.compute",
        "parameters": {
          "providerInstanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
          "action": "kp.delete",
          "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
          "kp_providerResourceId": "standard",
          "zone": "nova"
        },
        "results": {
          "instanceStatus": "deleted"
        }
  }
]





The requestStatus is completed.

Get the instance:

>node runcws.js geti
geti (retrieve instance)
options: {
  "url": "http://cws.computenext.com/api/instance/c4c2ddc6-9366-41c9-a813-9abd88b924b7",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "instanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
  "created": "2013-12-20T01:16:15.938Z",
  "updated": "2013-12-20T01:23:27.403Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "resourceUri": "kp/hpcloud/nova/standard",
  "resourceType": "kp",
  "provider": "hpcloud",
  "region": "nova",
  "providerResourceId": "standard",
  "attributes": {
        "providerInstanceId": "c4c2ddc6-9366-41c9-a813-9abd88b924b7",
        "publicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAAAgQDV4ijOycM6VmQZoCQCu74MkonLYKWCr0976ZlU8weJcdhxqB20hy6ylLzj59qS3MNxRkUXNeMmmvXEpR/bDSC3ZTS4EwLOmSf6tbPhSg1trv7C0iwsfvJB/TiIQs
Do+e5R0M+6LBTTxjEn/fQUZejDIaIkWJXhRR4W80mzevifrQ== \n",
        "privateKey": "-----BEGIN RSA PRIVATE KEY-----\nMIICXQIBAAKBgQDV4ijOycM6VmQZoCQCu74MkonLYKWCr0976ZlU8weJcdhxqB20\nhy6ylLzj59qS3MNxRkUXNeMmmvXEpR/bDSC3ZTS4EwLOmSf6tbPhSg1trv7C0i
ws\nfvJB/TiIQsDo+e5R0M+6LBTTxjEn/fQUZejDIaIkWJXhRR4W80mzevifrQIDAQAB\nAoGAVqq51nEzRqRTE38smF7y9605YMvcxUO8dX2GwEFqQGt9RTDWOJy+c2aJ09/T\nVcdW+sN6o5kWXkJUbEZszhpXsrp5Nn7pMBV3TwLhJjXW
3H2v/RndLu2Sj/6ar6Yp\ncYR8jyOIwQIATBn7XWoayeY6EeAu/FU9KFqtTWYQUtXG+YECQQD9Pdi1IQstqzbf\nE+TjQ1WBiBM3fEIbaQzNhuDeVDo2K+Wh3dzAIxtjBB5hp21V62Jw8HENqE5JA5cA\nOf06t20pAkEA2DaQeMLi77ctx7
0+FDja3KMeaGvjWCV591T48EVugUzvDiGY1dsk\ncv2dUeBqILmgcl9yZN1TNUWl0k6r+Ulq5QJBAJwfC8GmzHBsNFjUt/BPq6A+lrJH\nPa4OVmFCvND0FisdZuUilRwyyIiDmoNTp7kncznzUY886n5i4y21kmMnf/kCQQDJ\nP5if3v6u
k/k3xqzm07jbz7T5CxsUq+Vn0x7XPjlKfxqwM5N30z+NDQWG9XSzOzTd\n4Huw6NWPa2GabIHkSnMFAkANjrBz7Qp9l7FJVGOn29j2yWyP70tdvH3JiEhZubrI\nRS8YpU58USgow0uHOQABbnLF+U317/jHOtpJWuiUVJpl\n-----END R
SA PRIVATE KEY-----\n",
        "keyFingerprint": "a6:0d:bd:20:56:0d:a7:47:b4:01:a1:65:10:dd:58:5f",
        "instanceStatus": "deleted",
        "transientStatus": false
  },
  "attributeTimestamps": {
        "instanceStatus": "2013-12-20T01:23:27.381Z"
  },
  "metadata": {
        "name": "KP1",
        "description": "my first key pair"
  },
  "parameters": {
        "kp_providerResourceId": "standard",
        "zone": "nova"
  }
}





The instanceStatus is deleted.

Note that at some point deleted instances will be cleaned-up from the database and will return a “404 Not Found”.




Create A Virtual Machine

This example will show how to create (and delete) a virtual machine (vm) using runcws.

Create the instance:

>node runcws.js createi demo\vm.create.json
createi (create instance from resource)
options: {
  "url": "http://cws.computenext.com/api/resource/vm/hpcloud/nova/standard.small",
  "method": "post",
  "json": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "metadata": {
          "name": "VM-1",
          "description": "my first virtual machine"
        }
  },
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current requestId: 6b7fd23c-05d9-4a88-b8fd-efa859c1a04a
----- RESULT -----
{
  "requestId": "6b7fd23c-05d9-4a88-b8fd-efa859c1a04a",
  "created": "2014-01-09T22:51:39.039Z",
  "updated": "2014-01-09T22:51:39.039Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "requestStatus": "in-progress",
  "resourceUri": "vm/hpcloud/nova/standard.small",
  "resourceType": "vm",
  "provider": "hpcloud",
  "region": "nova",
  "connector": "openStack.compute",
  "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "action": "vm.create",
        "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova",
        "cpuCount": "2",
        "cpuSpeed": "1.2",
        "localStorage": "60",
        "ram": "2",
        "username": "ubuntu",
        "image_providerResourceId": "ami-00000075"
  },
  "metadata": {
        "name": "VM-1",
        "description": "my first virtual machine"
  }
}





Get the request:

>node runcws.js getr
getr (retrieve request)
options: {
  "url": "http://cws.computenext.com/api/request/6b7fd23c-05d9-4a88-b8fd-efa859c1a04a",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current instanceId: 615d07cf-d0e5-4325-ac02-1148d6e0d50b
----- RESULT -----
[
  {
        "requestId": "6b7fd23c-05d9-4a88-b8fd-efa859c1a04a",
        "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
        "created": "2014-01-09T22:51:39.039Z",
        "updated": "2014-01-09T22:51:42.394Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "requestStatus": "completed",
        "resourceUri": "vm/hpcloud/nova/standard.small",
        "resourceType": "vm",
        "provider": "hpcloud",
        "region": "nova",
        "connector": "openStack.compute",
        "parameters": {
          "imageUri": "image/hpcloud/nova/ami-00000075",
          "action": "vm.create",
          "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
          "vm_providerResourceId": "Standard.small",
          "zone": "nova",
          "cpuCount": "2",
          "cpuSpeed": "1.2",
          "localStorage": "60",
          "ram": "2",
          "username": "ubuntu",
          "image_providerResourceId": "ami-00000075"
        },
        "metadata": {
          "name": "VM-1",
          "description": "my first virtual machine"
        },
        "results": {
          "providerInstanceId": 2818157,
          "instanceStatus": "creating",
          "password": "<HIDDEN>"
        }
  }
]





The requestStatus is completed.

Note that the password property is hidden in the request.

Get the instance:

>node runcws.js geti
geti (retrieve instance)
options: {
  "url": "http://cws.computenext.com/api/instance/615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "created": "2014-01-09T22:51:42.389Z",
  "updated": "2014-01-09T22:51:42.389Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "resourceUri": "vm/hpcloud/nova/standard.small",
  "resourceType": "vm",
  "provider": "hpcloud",
  "region": "nova",
  "attributes": {
        "providerInstanceId": 2818157,
        "password": "bAZRf2qQ5VDdE76t",
        "instanceStatus": "creating",
        "transientStatus": true
  },
  "attributeTimestamps": {
        "password": "2014-01-09T22:51:42.384Z",
        "instanceStatus": "2014-01-09T22:51:42.387Z"
  },
  "metadata": {
        "name": "VM-1",
        "description": "my first virtual machine"
  },
  "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova",
        "cpuCount": "2",
        "cpuSpeed": "1.2",
        "localStorage": "60",
        "ram": "2",
        "username": "ubuntu",
        "image_providerResourceId": "ami-00000075"
  }
}





Note that the instanceStatus is creating which means that the vm instance itself is not completely created - it has not reached a stable state.

The transientStatus property is a hint that we need to keep polling for the instanceStatus to change.

So, we need to “retrieve instance” again - this time with refresh so that the instance status will be fetched from the provider side.

Get instance (with refresh):

>node runcws.js getir
getir (retrieve instance (with refresh))
options: {
  "url": "http://cws.computenext.com/api/instance/615d07cf-d0e5-4325-ac02-1148d6e0d50b?refresh=true",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current requestId: fa948a88-ed48-4c93-a69b-1f2becd11ae9
----- RESULT -----
{
  "requestId": "fa948a88-ed48-4c93-a69b-1f2becd11ae9",
  "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "created": "2014-01-09T22:58:08.462Z",
  "updated": "2014-01-09T22:58:08.462Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "requestStatus": "in-progress",
  "resourceUri": "vm/hpcloud/nova/standard.small",
  "resourceType": "vm",
  "provider": "hpcloud",
  "region": "nova",
  "connector": "openStack.compute",
  "parameters": {
        "providerInstanceId": 2818157,
        "action": "vm.retrieve",
        "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova"
  }
}





Note that ”?refresh=true” was specified on the query parameters.

Note that a request is returned, not an instance.

Get the request:

>node runcws.js getr
getr (retrieve request)
options: {
  "url": "http://cws.computenext.com/api/request/fa948a88-ed48-4c93-a69b-1f2becd11ae9",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
        "requestId": "fa948a88-ed48-4c93-a69b-1f2becd11ae9",
        "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
        "created": "2014-01-09T22:58:08.462Z",
        "updated": "2014-01-09T22:58:08.899Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "requestStatus": "completed",
        "resourceUri": "vm/hpcloud/nova/standard.small",
        "resourceType": "vm",
        "provider": "hpcloud",
        "region": "nova",
        "connector": "openStack.compute",
        "parameters": {
          "providerInstanceId": 2818157,
          "action": "vm.retrieve",
          "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
          "vm_providerResourceId": "Standard.small",
          "zone": "nova"
        },
        "results": {
          "instanceStatus": "running",
          "privateIpAddress": "10.3.118.211",
          "publicIpAddress": "15.185.250.68"
        }
  }
]





Now we can see that the request is completed and the instanceStatus is running.

Get the instance (no refresh):

>node runcws.js geti
geti (retrieve instance)
options: {
  "url": "http://cws.computenext.com/api/instance/615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "created": "2014-01-09T22:51:42.389Z",
  "updated": "2014-01-09T22:58:08.891Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "resourceUri": "vm/hpcloud/nova/standard.small",
  "resourceType": "vm",
  "provider": "hpcloud",
  "region": "nova",
  "providerResourceId": "Standard.small",
  "attributes": {
        "providerInstanceId": 2818157,
        "password": "bAZRf2qQ5VDdE76t",
        "instanceStatus": "running",
        "transientStatus": false,
        "privateIpAddress": "10.3.118.211",
        "publicIpAddress": "15.185.250.68"
  },
  "attributeTimestamps": {
        "password": "2014-01-09T22:58:08.858Z",
        "instanceStatus": "2014-01-09T22:58:08.861Z",
        "privateIpAddress": "2014-01-09T22:58:08.859Z",
        "publicIpAddress": "2014-01-09T22:58:08.860Z"
  },
  "metadata": {
        "name": "VM-1",
        "description": "my first virtual machine"
  },
  "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova",
        "cpuCount": "2",
        "cpuSpeed": "1.2",
        "localStorage": "60",
        "ram": "2",
        "username": "ubuntu",
        "image_providerResourceId": "ami-00000075"
  }
}





The instanceStatus is now running and the password and IP addresses are available on the attributes.

Delete the instance:

>node runcws.js deletei
deletei (delete instance)
options: {
  "url": "http://cws.computenext.com/api/instance/615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "method": "delete",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current requestId: 296b6f68-b003-4fd1-aa9e-5fb979d5d42a
----- RESULT -----
{
  "requestId": "296b6f68-b003-4fd1-aa9e-5fb979d5d42a",
  "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "created": "2014-01-09T23:05:09.072Z",
  "updated": "2014-01-09T23:05:09.072Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "requestStatus": "in-progress",
  "resourceUri": "vm/hpcloud/nova/standard.small",
  "resourceType": "vm",
  "provider": "hpcloud",
  "region": "nova",
  "connector": "openStack.compute",
  "parameters": {
        "providerInstanceId": 2818157,
        "action": "vm.delete",
        "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova"
  }
}





Get the request:

>node runcws.js getr
getr (retrieve request)
options: {
  "url": "http://cws.computenext.com/api/request/296b6f68-b003-4fd1-aa9e-5fb979d5d42a",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
        "requestId": "296b6f68-b003-4fd1-aa9e-5fb979d5d42a",
        "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
        "created": "2014-01-09T23:05:09.072Z",
        "updated": "2014-01-09T23:05:09.588Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "requestStatus": "completed",
        "resourceUri": "vm/hpcloud/nova/standard.small",
        "resourceType": "vm",
        "provider": "hpcloud",
        "region": "nova",
        "connector": "openStack.compute",
        "parameters": {
          "providerInstanceId": 2818157,
          "action": "vm.delete",
          "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
          "vm_providerResourceId": "Standard.small",
          "zone": "nova"
        },
        "results": {
          "instanceStatus": "deleted"
        }
  }
]





The requestStatus is completed.

Get the instance:

>node runcws.js geti
geti (retrieve instance)
options: {
  "url": "http://cws.computenext.com/api/instance/615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "instanceId": "615d07cf-d0e5-4325-ac02-1148d6e0d50b",
  "created": "2014-01-09T22:51:42.389Z",
  "updated": "2014-01-09T23:05:09.573Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "resourceUri": "vm/hpcloud/nova/standard.small",
  "resourceType": "vm",
  "provider": "hpcloud",
  "region": "nova",
  "providerResourceId": "Standard.small",
  "attributes": {
        "providerInstanceId": 2818157,
        "password": "bAZRf2qQ5VDdE76t",
        "instanceStatus": "deleted",
        "transientStatus": false,
        "privateIpAddress": "10.3.118.211",
        "publicIpAddress": "15.185.250.68"
  },
  "attributeTimestamps": {
        "password": "2014-01-09T22:58:08.858Z",
        "instanceStatus": "2014-01-09T23:05:09.515Z",
        "privateIpAddress": "2014-01-09T22:58:08.859Z",
        "publicIpAddress": "2014-01-09T22:58:08.860Z"
  },
  "metadata": {
        "name": "VM-1",
        "description": "my first virtual machine"
  },
  "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova",
        "cpuCount": "2",
        "cpuSpeed": "1.2",
        "localStorage": "60",
        "ram": "2",
        "username": "ubuntu",
        "image_providerResourceId": "ami-00000075"
  }
}





The instanceStatus is deleted.

Note that sometimes you will see the vm in the deleting state (which is transient) before it moves to deleted state.

Note that at some point deleted instances will be cleaned-up from the database and will return a “404 Not Found”.




Create A Private Image from a Virtual Machine

This example will show how to create a private image (image) from a virtual machine (vm).

We start with an existing vm instance from which we want to create a private image.

Get the existing vm instance:

>node runcws.js geti
geti (retrieve instance)
options: {
  "url": "http://cws.computenext.com/api/instance/3ebb5243-2a11-4da0-844c-60f6f087bcfd",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "instanceId": "3ebb5243-2a11-4da0-844c-60f6f087bcfd",
  "created": "2014-01-09T23:27:16.793Z",
  "updated": "2014-01-09T23:28:35.070Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "resourceUri": "vm/hpcloud/nova/standard.small",
  "resourceType": "vm",
  "provider": "hpcloud",
  "region": "nova",
  "providerResourceId": "Standard.small",
  "attributes": {
        "providerInstanceId": 2818403,
        "password": "S3m7cbqC78YhGQ7i",
        "instanceStatus": "running",
        "transientStatus": false,
        "privateIpAddress": "10.3.216.96",
        "publicIpAddress": "15.185.244.42"
  },
  "attributeTimestamps": {
        "password": "2014-01-09T23:28:35.043Z",
        "instanceStatus": "2014-01-09T23:28:35.047Z",
        "privateIpAddress": "2014-01-09T23:28:35.043Z",
        "publicIpAddress": "2014-01-09T23:28:35.045Z"
  },
  "metadata": {
        "name": "VM-1",
        "description": "my first virtual machine"
  },
  "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova",
        "cpuCount": "2",
        "cpuSpeed": "1.2",
        "localStorage": "60",
        "ram": "2",
        "username": "ubuntu",
        "image_providerResourceId": "ami-00000075"
  }
}





The vm instanceStatus is running.

Create the private image instance from the vm instance:

>node runcws.js createimage demo\vm.create.image.json
createimage (create an image instance from a VM instance)
options: {
  "url": "http://cws.computenext.com/api/instance/3ebb5243-2a11-4da0-844c-60f6f087bcfd?action=image",
  "method": "post",
  "json": {
        "metadata": {
          "name": "IMAGE-1",
          "description": "my first image"
        }
  },
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current requestId: 79ca5b31-f42a-4489-b354-c0e3a7dfb473
##### setting current instanceId: e5cff882-8d95-4f8e-9087-531075a0b0e6
----- RESULT -----
{
  "requestId": "79ca5b31-f42a-4489-b354-c0e3a7dfb473",
  "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
  "created": "2014-01-10T00:27:32.368Z",
  "updated": "2014-01-10T00:27:32.368Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "requestStatus": "in-progress",
  "resourceUri": "image/hpcloud/nova/",
  "resourceType": "image",
  "provider": "hpcloud",
  "region": "nova",
  "connector": "openStack.compute",
  "parameters": {
        "providerInstanceId": 2818403,
        "action": "vm.create.image",
        "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
        "vm_providerResourceId": "Standard.small",
        "zone": "nova"
  },
  "metadata": {
        "name": "IMAGE-1",
        "description": "my first image"
  }
}





Note that this is an action on the vm instance.
The JSON file supplied to runcws (vm.create.image.json) is basically to supply metadata for the private image instance only.

Get the request:

>node runcws.js getr
getr (retrieve request)
options: {
  "url": "http://cws.computenext.com/api/request/79ca5b31-f42a-4489-b354-c0e3a7dfb473",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
        "requestId": "79ca5b31-f42a-4489-b354-c0e3a7dfb473",
        "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
        "created": "2014-01-10T00:27:32.368Z",
        "updated": "2014-01-10T00:27:33.302Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "requestStatus": "completed",
        "resourceUri": "image/hpcloud/nova/",
        "resourceType": "image",
        "provider": "hpcloud",
        "region": "nova",
        "connector": "openStack.compute",
        "parameters": {
          "providerInstanceId": 2818403,
          "action": "vm.create.image",
          "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
          "vm_providerResourceId": "Standard.small",
          "zone": "nova"
        },
        "metadata": {
          "name": "IMAGE-1",
          "description": "my first image"
        },
        "results": {
          "providerInstanceId": "ami-00058180",
          "instanceStatus": "creating"
        }
  }
]





The requestStatus is completed.
The image instanceStatus is creating so we should retrieve the image instance again, with refresh.

Get the image instance (with refresh):

>node runcws.js getir
getir (retrieve instance (with refresh))
options: {
  "url": "http://cws.computenext.com/api/instance/e5cff882-8d95-4f8e-9087-531075a0b0e6?refresh=true",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
##### setting current requestId: 26b5c11d-dbd7-498c-9ba9-3683acb620b3
----- RESULT -----
{
  "requestId": "26b5c11d-dbd7-498c-9ba9-3683acb620b3",
  "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
  "created": "2014-01-10T00:29:36.854Z",
  "updated": "2014-01-10T00:29:36.854Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "requestStatus": "in-progress",
  "resourceUri": "image/hpcloud/nova/ami-00058180",
  "resourceType": "image",
  "provider": "hpcloud",
  "region": "nova",
  "connector": "openStack.compute",
  "parameters": {
        "providerInstanceId": "ami-00058180",
        "action": "image.retrieve",
        "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
        "image_providerResourceId": "ami-00058180",
        "zone": "nova"
  }
}





Get the request:

>node runcws.js getr
getr (retrieve request)
options: {
  "url": "http://cws.computenext.com/api/request/26b5c11d-dbd7-498c-9ba9-3683acb620b3",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
        "requestId": "26b5c11d-dbd7-498c-9ba9-3683acb620b3",
        "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
        "created": "2014-01-10T00:29:36.854Z",
        "updated": "2014-01-10T00:29:37.315Z",
        "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
        "requestStatus": "completed",
        "resourceUri": "image/hpcloud/nova/ami-00058180",
        "resourceType": "image",
        "provider": "hpcloud",
        "region": "nova",
        "connector": "openStack.compute",
        "parameters": {
          "providerInstanceId": "ami-00058180",
          "action": "image.retrieve",
          "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
          "image_providerResourceId": "ami-00058180",
          "zone": "nova"
        },
        "results": {
          "providerInstanceId": "360832",
          "progress": 100,
          "instanceStatus": "created"
        }
  }
]





The requestStatus is completed and the instanceStatus (of the image) is now created.

Get the image instance:

>node runcws.js geti
geti (retrieve instance)
options: {
  "url": "http://cws.computenext.com/api/instance/e5cff882-8d95-4f8e-9087-531075a0b0e6",
  "method": "get",
  "auth": {
        "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
        "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "instanceId": "e5cff882-8d95-4f8e-9087-531075a0b0e6",
  "created": "2014-01-10T00:27:33.296Z",
  "updated": "2014-01-10T00:29:37.306Z",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "resourceUri": "image/hpcloud/nova/ami-00058180",
  "resourceType": "image",
  "provider": "hpcloud",
  "region": "nova",
  "providerResourceId": "ami-00058180",
  "attributes": {
        "providerInstanceId": "ami-00058180",
        "instanceStatus": "created",
        "transientStatus": false
  },
  "attributeTimestamps": {
        "instanceStatus": "2014-01-10T00:29:37.282Z"
  },
  "metadata": {
        "name": "IMAGE-1",
        "description": "my first image"
  },
  "parameters": {
        "providerInstanceId": 2818403,
        "vm_providerResourceId": "Standard.small",
        "zone": "nova"
  }
}





The image instanceStatus is now created.

You can now use this image resourceUri to create new vm instances.

Deletion of a private image instance is similar to any other instance type.







          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            
  
Getting Started with Workloads

This section will explain how to get started with the ComputeNext workload API.

For this tutorial we will use a simple command line interface tool from ComputeNext called runcws.

runcws is a JavaScript program for Node.js.

(CWS = ComputeNext Web Services)

It is basically a simple layer over the REST API, and it keeps track of the various ID’s for you to make things easier.

It makes one REST call to the ComputeNext REST API and returns the results.

You could also use any other HTTP or REST test tool such as curl

NOTE: This tutorial assumes you are familiar with the basic concepts of the ComputeNext API, including instances and workloads.

The workloadAPI consists of a bunch of standard CRUD methods (Create/Retrieve/Update/Delete) plus some other methods used to control
the planning, activation and deactivation of resources in the workload.

Tutorial Notes

The examples in this tutorial were done with an early version of the runcws tool and used HTTP (not HTTPS).

It is strongly recommended that you use HTTPS for all interactions with the ComputeNext API because Basic authentication is used.

If HTTPS is not used, your credentials will be in clear text “on the wire”.

Some examples in this tutorial were done at different times, so sometimes the timestamps etc. may not exactly match between examples.

To execute the workload plan you must first enter your payment information into the ComputeNext website.
If you do not have payment information you will receive a “403 Forbidden” error.

The examples were run on a Windows platform, things might be slightly different on Linux.


Download and Install runcws

runcws is a Node.js script so first you will need to install Node.js from here: http://nodejs.org/download/

Any current stable build should work.

runcws is installed using NPM:

C:\>npm install runcws
npm http GET https://registry.npmjs.org/runcws
npm http 304 https://registry.npmjs.org/runcws
runcws@1.0.3 runcws

C:\>cd runcws

C:\runcws>dir
 Volume in drive C has no label.
 Volume Serial Number is A000-0000

 Directory of C:\runcws

01/06/2014  04:31 PM    <DIR>          .
01/06/2014  04:31 PM    <DIR>          ..
01/06/2014  04:31 PM               333 current.json
01/06/2014  04:31 PM    <DIR>          demo
01/06/2014  04:31 PM            18,365 LICENSE
01/06/2014  04:31 PM             1,184 package.json
01/06/2014  04:31 PM               168 README.md
01/06/2014  04:31 PM            10,991 runcws.js
01/06/2014  04:31 PM             6,726 runcws.json
01/06/2014  04:31 PM    <DIR>          workloads
               6 File(s)         37,767 bytes
               4 Dir(s)  583,675,293,696 bytes free





You will need to run node runcws.js from this directory.

The current.json file contains current settings for the runcws script and needs to be writable.

The demo directory contains sample JSON files for the instance API tutorial.

The workloads directory contains sample JSON workload files for the workload API tutorial.

Get a list of the possible commands/methods that runcws provides by entering at the command line:

>node runcws.js
SYNTAX: node runcws <command>
EXAMPLE: node runcws show
----- commands (resource) -----
metadata (retrieve resource metadata)
query (query resources)
region (retrieve region details)
restrictions (retrieve image restrictions)
capabilities (retrieve resource capabilities)
resource (retrieve resource details)
action (retrieve resource actions)
validate (validate resource)
----- commands (instance) -----
createi (create instance from resource)
getr (retrieve request)
listr (retrieve multiple requests)
createimage (create an image instance from a VM instance)
geti (retrieve instance)
getir (retrieve instance (with refresh))
listi (retrieve multiple instances)
listiwl (retrieve all instances in the workload)
listitx (retrieve all instances in the transaction)
updatei (update instance)
deletei (delete instance)
----- commands (workload) -----
createwl (create workload)
clonewl (clone workload)
getwl (retrieve workload)
listwl (retrieve multiple workloads)
updatewl (update workload)
deletewl (delete workload)
updateel (create or update a workload element)
deleteel (delete workload element)
activate (plan workload activation)
deactivate (plan workload deactivation)
execute (execute workload plan)
steps (retrieve transaction steps)
errors (retrieve transaction errors)
status (retrieve transaction status)
cancel (cancel transaction)
----- commands (misc) -----
setr (set current requestId)
seti (set current instanceId)
setwl (set current workloadId)
settx (set current transactionId)
show (show current settings)





Note the first set of commands are used to query resources.
The query command itself has its own set of options shown as follows when one enters
the command:

>node runcws.js query
query (query resources)
ERROR: missing parameter: resource type (image | instanceType | virtualMachine | volumeStorage | softwareType | keyPair | securityGroup | loadBalancer | package)





Entering the following command will query the virtual machines producing the same output as using the http GET method:

>node runcws.js query virtualMachine








Set Up runcws

Before you start with runcws, you will need to obtain your API keys for your ComputeNext user account.

Instructions for doing this are here: Obtaining API Keys

As part of the runcws installation there is a JSON file named current.json

Open this with a text editor and update the apikey and apisec properties.




List (Retrieve Multiple) Workloads

First, we will try and list your workloads. If this succeeds, you will know that you are communicating OK with the ComputeNext REST API endpoint.

All input and output to/from the API is in JSON format.

If you have no workloads this method will return an empty JSON array:

>node runcws.js listwl
listwl (retrieve multiple workloads)
options: {
  "url": "http://cws.computenext.com/api/workload",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[]





If you already have one or more workloads defined, your output may look something like this:

>node runcws.js listwl
listwl (retrieve multiple workloads)
options: {
  "url": "http://cws.computenext.com/api/workload",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
    "workloadId": "34452cb1-7523-4157-b70b-09a326721aa6",
    "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
    "uniqueName": "wl-26820482",
    "name": "WL-26820482",
    "description": "WL-26820482",
    "created": "2013-12-17T18:07:06.549Z",
    "updated": "2013-12-17T18:07:21.523Z",
    "workloadStatus": "none",
    "hasPlan": false,
    "hasExecute": false
  },
  {
    "workloadId": "235e4fdf-b39c-40a9-aa4c-177965414e51",
    "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
    "uniqueName": "wl-d2940014",
    "name": "WL-D2940014",
    "description": "WL-D2940014",
    "created": "2013-12-17T18:07:28.667Z",
    "workloadStatus": "none",
    "hasPlan": false,
    "hasExecute": false
  }
]





In this case there are two workloads. In this call, only the “header” information for the workloads are returned, not the full workload JSON.

The workloadStatus property can have the values “none” or “in-progress”. “in-progress” means that some activity is in progress, such as planning, activation or deactivation (see later).

“hasPlan” means that this workload has a workload plan. See later.

“hasExecute” means that this workload has an execute section. See later.




Create Workload

Once we have established that we are communicating OK with the ComputeNext REST API endpoint, we can try to create our first workload.

There are some sample workloads in the runcws installation directory under “workloads”.

For a description of the workload schema see here: Workload Schema and here: Workload Element Schema

For a description of the parameters required for the various resource types see here: Resource Types, Actions and Parameters

To create our first workload:

>node runcws.js createwl workloads\hello_vm.json
createwl (create workload)
options: {
  "url": "http://cws.computenext.com/api/workload",
  "method": "post",
  "json": {
    "name": "Hello VM",
    "description": "Workload 'hello world' for one VM",
    "metadata": {
      "test": "this is metadata for the entire workload - can be anything",
      "test1": "another line of metadata"
    },
    "elements": [
      {
        "name": "VM 1",
        "uri": "vm/hpcloud/nova/standard.small",
        "parameters": {
          "imageUri": "image/hpcloud/nova/ami-00000075",
          "keyPair": "KP 1",
          "securityGroups": [
            "SG 1",
            "SG 2"
          ]
        },
        "metadata": {
          "description": "hello world - my first virtual machine"
        }
      }
    ]
  },
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
### setting current workloadId: b4ee62da-8dff-4a6b-b39f-54acf26a3a6d
----- RESULT -----
{
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovm",
  "name": "Hello VM",
  "description": "Workload 'hello world' for one VM",
  "created": "2013-12-19T01:23:27.354Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 1",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my first virtual machine"
      }
    }
  ]
}





The workload JSON is echoed back in the result from the API call so we can check that everything is correct.




Retrieve Workload

We can now retrieve the workload we just created:

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovm",
  "name": "Hello VM",
  "description": "Workload 'hello world' for one VM",
  "created": "2013-12-19T01:23:27.354Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 1",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my first virtual machine"
      }
    }
  ],
  "workloadStatus": "none"
}








Clone Workload

Cloning a workload allows us to create another workload that is exactly the same as the original workload except for its name - because the workload name must be unique.

Clone the workload:

>node runcws.js clonewl MyFirstClone
clonewl (clone workload)
options: {
  "url": "http://cws.computenext.com/api/workload/clone/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "post",
  "json": {
    "name": "MyFirstClone"
  },
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
### setting current workloadId: 9c3bfffc-0d12-4ebb-b897-83b8ee567065
----- RESULT -----
{
  "workloadId": "9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "myfirstclone",
  "name": "MyFirstClone",
  "description": "Workload 'hello world' for one VM",
  "created": "2013-12-19T01:38:31.713Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 1",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my first virtual machine"
      }
    }
  ]
}





If we now list the workloads, we will see both the original workload (name = Hello VM) and the new “cloned” workload (name = MyFirstClone)




Update Workload

To demonstrate updating a workload, we will overwrite our cloned workload (MyFirstClone) with a completely different workload JSON (Hello VS):

>node runcws.js updatewl workloads\hello_vs.json
updatewl (update workload)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "method": "put",
  "json": {
    "name": "Hello VS",
    "description": "Workload 'hello world' for one VS",
    "metadata": {
      "test": "this is metadata for the entire workload - can be anything",
      "test1": "another line of metadata"
    },
    "elements": [
      {
        "name": "VS 1",
        "uri": "vs/hpcloud/nova/standard.10",
        "parameters": {
          "sizeInGBytes": 1
        },
        "metadata": {
          "description": "hello world - my first volume storage"
        }
      }
    ]
  },
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovs",
  "name": "Hello VS",
  "description": "Workload 'hello world' for one VS",
  "updated": "2013-12-19T01:42:26.517Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VS 1",
      "uri": "vs/hpcloud/nova/standard.10",
      "parameters": {
        "sizeInGBytes": 1
      },
      "metadata": {
        "description": "hello world - my first volume storage"
      }
    }
  ]
}





Get the workload:

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovs",
  "name": "Hello VS",
  "description": "Workload 'hello world' for one VS",
  "created": "2013-12-19T01:38:31.713Z",
  "updated": "2013-12-19T01:42:26.517Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VS 1",
      "uri": "vs/hpcloud/nova/standard.10",
      "parameters": {
        "sizeInGBytes": 1
      },
      "metadata": {
        "description": "hello world - my first volume storage"
      }
    }
  ],
  "workloadStatus": "none"
}





Note that the workloadId has not changed, so we updated the name, description, metadata and elements properties of the original cloned workload.




Update Workload Element

Now, let’s add one new workload element (VM 2) to this workload:

>node runcws.js updateel workloads\vm_element.json
updateel (create or update a workload element)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065/element",
  "method": "put",
  "json": {
    "name": "VM 2",
    "uri": "vm/hpcloud/nova/standard.small",
    "parameters": {
      "imageUri": "image/hpcloud/nova/ami-00000075",
      "keyPair": "KP 1",
      "securityGroups": [
        "SG 1",
        "SG 2"
      ]
    },
    "metadata": {
      "description": "hello world - my SECOND virtual machine"
    }
  },
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "name": "VM 2",
  "uri": "vm/hpcloud/nova/standard.small",
  "parameters": {
    "imageUri": "image/hpcloud/nova/ami-00000075",
    "keyPair": "KP 1",
    "securityGroups": [
      "SG 1",
      "SG 2"
    ]
  },
  "metadata": {
    "description": "hello world - my SECOND virtual machine"
  }
}





Get the workload:

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovs",
  "name": "Hello VS",
  "description": "Workload 'hello world' for one VS",
  "created": "2013-12-19T01:38:31.713Z",
  "updated": "2013-12-19T01:47:06.516Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 2",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my SECOND virtual machine"
      }
    },
    {
      "name": "VS 1",
      "uri": "vs/hpcloud/nova/standard.10",
      "parameters": {
        "sizeInGBytes": 1
      },
      "metadata": {
        "description": "hello world - my first volume storage"
      }
    }
  ],
  "workloadStatus": "none"
}





You can see that there was originally only the “VS 1” workload element, now the “VM 2” workload element has been added.




Delete Workload Element

To delete a workload element, the JSON that is sent must contain (at least) the workload element name.

Workload elements are identified by name only, and the workload element name must be unique in the workload.

Delete one element (VM 2):

>node runcws.js deleteel workloads\vm_element.json
deleteel (delete workload element)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065/element",
  "method": "delete",
  "json": {
    "name": "VM 2",
    "uri": "vm/hpcloud/nova/standard.small",
    "parameters": {
      "imageUri": "image/hpcloud/nova/ami-00000075",
      "keyPair": "KP 1",
      "securityGroups": [
        "SG 1",
        "SG 2"
      ]
    },
    "metadata": {
      "description": "hello world - my SECOND virtual machine"
    }
  },
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "name": "VM 2",
  "uri": "vm/hpcloud/nova/standard.small",
  "parameters": {
    "imageUri": "image/hpcloud/nova/ami-00000075",
    "keyPair": "KP 1",
    "securityGroups": [
      "SG 1",
      "SG 2"
    ]
  },
  "metadata": {
    "description": "hello world - my SECOND virtual machine"
  }
}





Get the workload:

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovs",
  "name": "Hello VS",
  "description": "Workload 'hello world' for one VS",
  "created": "2013-12-19T01:38:31.713Z",
  "updated": "2013-12-19T01:57:58.944Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VS 1",
      "uri": "vs/hpcloud/nova/standard.10",
      "parameters": {
        "sizeInGBytes": 1
      },
      "metadata": {
        "description": "hello world - my first volume storage"
      }
    }
  ],
  "workloadStatus": "none"
}





You can see the “VM 2” workload element has now been removed from the workload.




Delete Workload

To delete the workload:

>node runcws.js deletewl
deletewl (delete workload)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "method": "delete",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "workloadId": "9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "deleted": true
}





The “deleted” property tells us whether the workload was actually deleted - or whether it was just not actually there:

>node runcws.js deletewl
deletewl (delete workload)
options: {
  "url": "http://cws.computenext.com/api/workload/9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "method": "delete",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "workloadId": "9c3bfffc-0d12-4ebb-b897-83b8ee567065",
  "deleted": false
}








Plan Workload Activation

We have now deleted the workload that we cloned, so we need to set our workloadId used by runcws back to the original workload (Hello VM):

>node runcws.js setwl b4ee62da-8dff-4a6b-b39f-54acf26a3a6d
setwl (set current workloadId)
----- current settings -----
requestId: 190fe3a8-4d97-4de3-b6a9-c00ae7a4e1ec
instanceId: 3e9b4f1a-3e1e-4784-941a-feab27974b45
workloadId: b4ee62da-8dff-4a6b-b39f-54acf26a3a6d
transactionId: 8b3e4597-ab54-4b37-bcf0-3ebbbf1238f3





BTW, we can see the current settings used by runcws using the show command:

>node runcws.js show
show (show current settings)
----- current settings -----
requestId: 190fe3a8-4d97-4de3-b6a9-c00ae7a4e1ec
instanceId: 3e9b4f1a-3e1e-4784-941a-feab27974b45
workloadId: b4ee62da-8dff-4a6b-b39f-54acf26a3a6d
transactionId: 8b3e4597-ab54-4b37-bcf0-3ebbbf1238f3





We are now going to plan the activation of the workload.

In the workload API, activation (or deactivation) of a workload is a two phase process.
First, the workload is planned, and then the plan is executed.
This two phase process allows you to check what will be done before it is actually done, so you can verify that you are getting what you expected.
If something fails, it also makes it easier to understand exactly what failed and why.

To plan activation:

>node runcws.js activate
activate (plan workload activation)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d/plan?action=activate",
  "method": "put",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadStatus": "in-progress",
  "action": "plan-activate"
}





The workload is now in the process of planning. For a simple workload such as this it should be quite quick. For larger and more complex workloads this can take some time.

Get the workload:

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovm",
  "name": "Hello VM",
  "description": "Workload 'hello world' for one VM",
  "created": "2013-12-19T01:23:27.354Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 1",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my first virtual machine"
      }
    }
  ],
  "workloadStatus": "none",
  "plan": {
    "action": "activate",
    "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
    "created": "2013-12-19T02:07:54.180Z",
    "expires": "2013-12-19T02:12:54.180Z",
    "elements": [
      {
        "name": "VM 1",
        "uri": "vm/hpcloud/nova/standard.small",
        "parameters": {
          "imageUri": "image/hpcloud/nova/ami-00000075",
          "keyPairId": "*0000_kp_create_kp1",
          "securityGroupIds": [
            "*0001_sg_create_sg1",
            "*0003_sg_create_sg2"
          ]
        },
        "metadata": {
          "description": "hello world - my first virtual machine",
          "name": "VM 1"
        },
        "resource": {
          "id": "vm_hpcloud_nova_standard-small",
          "uri": "vm/hpcloud/nova/standard.small",
          "resourceType": "vm",
          "provider": "hpcloud",
          "region": "nova",
          "providerResourceId": "Standard.small",
          "cpuSpeed": "1.2",
          "cpuCount": "2",
          "localStorage": "60",
          "ram": "2",
          "operatingSystemVersion": "64 Bit",
          "zone": "nova",
          "connectorType": "openStack.compute"
        }
      }
    ],
    "serial": [
      {
        "parallel": [
          {
            "step": {
              "id": "0000_kp_create_kp1",
              "action": "kp.create",
              "uri": "kp/hpcloud/nova/standard",
              "metadata": {
                "name": "KP 1"
              },
              "sourceElement": "VM 1",
              "resource": {
                "provider": "hpcloud",
                "region": "nova",
                "resourceType": "kp"
              },
              "timing": {
                "min": 1.09,
                "avg": 1.82,
                "max": 2.11
              }
            }
          }
        ]
      },
      {
        "parallel": [
          {
            "step": {
              "id": "0001_sg_create_sg1",
              "action": "sg.create",
              "uri": "sg/hpcloud/nova/standard",
              "metadata": {
                "name": "SG 1"
              },
              "sourceElement": "VM 1",
              "resource": {
                "provider": "hpcloud",
                "region": "nova",
                "resourceType": "sg"
              },
              "timing": {
                "min": 1.03,
                "avg": 1.04,
                "max": 1.08
              }
            }
          },
          {
            "step": {
              "id": "0003_sg_create_sg2",
              "action": "sg.create",
              "uri": "sg/hpcloud/nova/standard",
              "metadata": {
                "name": "SG 2"
              },
              "sourceElement": "VM 1",
              "resource": {
                "provider": "hpcloud",
                "region": "nova",
                "resourceType": "sg"
              },
              "timing": {
                "min": 1.03,
                "avg": 1.04,
                "max": 1.08
              }
            }
          }
        ]
      },
      {
        "parallel": [
          {
            "step": {
              "id": "0002_sg_update_add_access_sg1",
              "action": "sg.update.add-access",
              "instanceId": "*0001_sg_create_sg1",
              "parameters": {
                "rules": [
                  {
                    "protocol": "tcp",
                    "from-port": 22,
                    "to-port": 22
                  },
                  {
                    "protocol": "tcp",
                    "from-port": 3389,
                    "to-port": 3389
                  },
                  {
                    "protocol": "icmp",
                    "from-port": -1,
                    "to-port": -1
                  }
                ]
              },
              "sourceElement": "VM 1",
              "timing": {
                "min": 1.06,
                "avg": 1.4,
                "max": 3.1
              }
            }
          },
          {
            "step": {
              "id": "0004_sg_update_add_access_sg2",
              "action": "sg.update.add-access",
              "instanceId": "*0003_sg_create_sg2",
              "parameters": {
                "rules": [
                  {
                    "protocol": "tcp",
                    "from-port": 22,
                    "to-port": 22
                  },
                  {
                    "protocol": "tcp",
                    "from-port": 3389,
                    "to-port": 3389
                  },
                  {
                    "protocol": "icmp",
                    "from-port": -1,
                    "to-port": -1
                  }
                ]
              },
              "sourceElement": "VM 1",
              "timing": {
                "min": 1.06,
                "avg": 1.4,
                "max": 3.1
              }
            }
          }
        ]
      },
      {
        "parallel": [
          {
            "step": {
              "id": "0005_vm_create_vm1",
              "action": "vm.create",
              "uri": "vm/hpcloud/nova/standard.small",
              "parameters": {
                "imageUri": "image/hpcloud/nova/ami-00000075",
                "keyPairId": "*0000_kp_create_kp1",
                "securityGroupIds": [
                  "*0001_sg_create_sg1",
                  "*0003_sg_create_sg2"
                ]
              },
              "metadata": {
                "description": "hello world - my first virtual machine",
                "name": "VM 1"
              },
              "sourceElement": "VM 1",
              "timing": {
                "min": 90.34,
                "avg": 90.34,
                "max": 90.34
              }
            }
          }
        ]
      }
    ],
    "inventory": {
      "hpcloud": {
        "nova": {
          "quota": {
            "kp": {
              "count": "17.31"
            },
            "sg": {
              "count": "32.00"
            },
            "vm": {
              "count": "4.00",
              "cpuCount": "0.60",
              "localStorage": "1.80",
              "ram": "0.06"
            },
            "vs": {
              "count": "0.00",
              "sizeInGBytes": "0.00"
            }
          }
        }
      }
    },
    "summary": {
      "kp": 1,
      "sg": 2,
      "vm": 1
    }
  }
}





You can see that the “plan” section has now been added into the workload JSON and that it contains a lot of new properties.


	plan.action

	plan.expires

	plan.elements

	plan.serial

	plan.inventory

	plan.summary




plan.action

This indicates what kind of plan was requested - “activate” or “deactivate”.




plan.expires

The workload plan depends on the current state of the instances, so the plan has an expire time of 5 minutes.
When the plan expires, it will be removed from the workload JSON.




plan.elements

This is a snapshot of the workload elements at the time they were used for the plan.
At this point you can update the workload and add & delete elements to the elements section, so the plan.elements section preserves what was used for the plan.
The plan.elements section within the plan is slightly different to the original elements section.
It has been processed into a form that is useable by the instance API, because each step will be a call to the instance API.
You may see references to other steps which start with an asterisk ‘*’.
A resource property has been added to each element which contains a summary of the resource properties.




plan.serial

This is the start of the actual workload plan.
The actual workload plan is a set of nested sections, some can be serial (executed one at a time) and some can be parallel (executed concurrently).
It always starts with plan.serial.
The serial/parallel sections contain workload steps, which are the steps required to provision the workload elements. See below for the properties of a workload step.




plan.inventory

The plan has a plan.inventory property which gives a percentage indication of how much of a resource quota will be used at this region once the workload is provisoned.
For example, “inventory.hpcloud.nova.quota.kp.count” is 17.31, which means that 17.31 percent of the quota for key pairs will be reached for the hpcloud.nova region once this
workload has been successfully provisioned.

Note that the quotas are not enforced. You may have a quota over 100 percent at some region and you will still be allowed to execute the workload plan - but it is likely that it will fail.

User limits are similar to quotas, but these are the limits on how many resource instances of a given type can be created by the user.
These limits are enforced, and if you exceed these limits then there will be an error section added to the workload JSON with an explanation of the error.




plan.summary

This property summarizes how many resources of each resource type will be created when this plan is executed.




Workload Steps

A workload step can have similar properties to the workload element from which it was generated.
However - one workload element can generate multiple workload steps.


	step.id - this consists of a 4 digit number plus some identifying information about the step - it uniquely identifies the step within the plan.

	step.action - this specifies the instance API action that will be performed for the step.

	step.sourceElement - this references the original workload element that caused this step to be generated.

	step.timing - this has the minimum, average and maximum time (in seconds) expected for this step.






How the Plan is Generated

The workload plan is generated as follows -


	Key pairs (kp) are created. If you specify a kp by name in the workload element, the workload planner checks to see whether a kp instance with that name (in the instance metadata) already exists in the region. If it does, it uses it. If not, it adds a step to create the kp.

	Security groups (sg) are created. If you specify an sg by name in the workload element, the workload planner checks to see whether that sg exists. If not, it adds a step to create the sg. It also adds a step to add SSH, RDP and “ping” ports to that sg.

	Virtual machines (vm) are created.

	Floating IP addresses (ip) are created - if the vm requires them. A step is added to create the ip, and then another step is added to associate the ip with the vm.

	Volume storage (vs) is created. A step is added to create the vs, and if required a step is added to attach the vs to the vm.








Execute Workload

One you have reviewed the workload plan and are happy with it, you can execute the workload plan.

Note: To execute the workload plan you must first enter your payment information into the ComputeNext website.
If you do not have payment information you will receive a “403 Forbidden” error.

The process of execution of a workload plan is called a transaction.

To execute the workload plan:

>node runcws.js execute
execute (execute workload plan)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d/execute",
  "method": "put",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
### setting current transactionId: 06d7ab5f-f420-4fea-b0bf-456fbc14d884
----- RESULT -----
{
  "workloadStatus": "in-progress",
  "action": "execute",
  "transactionId": "06d7ab5f-f420-4fea-b0bf-456fbc14d884"
}





Note that the transactionId is returned and that the transaction is “in-progress”.

The workload plan is now in the process of executing. This can take some time.

You can monitor the progress of the workload execution with the transaction API (part of the workload API). See below.


Running Workload

When the workload plan executes, it will call the instance API to create instances of various types - for example, key pairs (kp), security groups (sg), virtual machines (vm), etc.

All instances created by the transaction are tagged with the transactionId.

If you want to find out all instances that were created by the transaction you can query the instance API to list instances with this transactionId (runcws listitx).

Virtual machine (vm) and volume storage (vs) instances are tagged with the workloadId.

If you want to find out all instances that are part of the “running workload” you can query the instance API to list instances with this workloadId (runcws listiwl).

We only have vm and vs workload elements in the workload, so only vm and vs instances are considered to be part of the running workload.




Partial Failures and Rollback

If something fails during the execution of a transaction, there is no automatic rollback.

For example, assume your workload specifies two virtual machine workload elements, VM1 and VM2.

Let’s suppose that during the transaction the creation of one of the virtual machines (VM2) fails for some reason.
Because the steps to create virtual machines are (usually) done in parallel, one of the virtual machines is created sucessfully (VM1), but the other (VM2) is not.
The transaction will go into “failed” status, and will probably indicate a “reason” of “timeout” or “retries” depending on how the failure manifested itself.
The transaction/errors (see below) will contain the details about what step failed and why.
But, your “running workload” will still have the virtual machine instance (VM1) that succeeded.
(The “running workload” is the collection of instances that are tagged with the workloadId of this workload).

You now have two choices. Either you can attempt the activation again, or you can deactivate.
If you know why the create of the virtual machine failed and it is something you can correct, you can update the workload element (for VM2) that failed, and re-activate the workload.
This will create a new workload plan. That workload plan will detect that you have already got one virtual machine (VM1) in your “running workload”, so it will only generate step(s) to
create the one virtual machine (VM2) that failed the first time.

If you want to rollback the creation of the original virtual machine (VM1) then you can deactivate.
That will generate a workload plan to delete VM1.

Note that billing is done on the basis of instance activation, and not on completion of a successful transaction.
If you have a partial activation, you will be charged for those instances that did get created successfully.






Transaction Status

To get the transaction status:

>node runcws.js status
status (retrieve transaction status)
options: {
  "url": "http://cws.computenext.com/api/transaction/06d7ab5f-f420-4fea-b0bf-456fbc14d884/status",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "transactionId": "06d7ab5f-f420-4fea-b0bf-456fbc14d884",
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "status": "in-progress",
  "started": "2013-12-19T21:51:20.786Z"
}





The transaction status can be one of the following values -


	in-progress

	failed



If “failed”, there will be a reason code -


	retries

	timeout

	cancelled



The transaction will fail if any one of the workload steps fails.


retries

If a workload step fails, it will attempt one retry. If the step fails again, then the transaction fails with reason code “retries”.




timeout

A workload step may timeout waiting for the instance to reach some required state.
For example, when creating a virtual machine (vm), the required state is “running”.
If the instance does not reach the required state within the time allowed the step will fail and hence the transaction will fail with reason code “timeout”.




cancelled

If the transaction is cancelled while in-progress (see below) then the transaction will go into failed status with reason code “cancelled”.






Transaction Steps

As the workload plan is executed, a log is kept of the progress.
Each log entry has a Log Sequence Number (the LSN) which is simply a sequence number of the log record.
When you call the workload API to get the transaction steps, you are getting those log entries that show the start and end for each step.

Note that the log for only one transaction (the last one) for each workload is maintained. You cannot go back and look at previous transactions.

To get the transaction steps:

>node runcws.js steps
steps (retrieve transaction steps)
options: {
  "url": "http://cws.computenext.com/api/transaction/06d7ab5f-f420-4fea-b0bf-456fbc14d884/steps",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
    "lsn": 1,
    "stepId": "0000_kp_create_kp1",
    "timestamp": "2013-12-19T21:51:20.803Z",
    "status": "in-progress"
  },
  {
    "lsn": 8,
    "stepId": "0000_kp_create_kp1",
    "timestamp": "2013-12-19T21:51:22.948Z",
    "status": "completed",
    "elapsedTimeInSeconds": 2.144
  },
  {
    "lsn": 9,
    "stepId": "0001_sg_create_sg1",
    "timestamp": "2013-12-19T21:51:22.961Z",
    "status": "in-progress"
  },
  {
    "lsn": 11,
    "stepId": "0003_sg_create_sg2",
    "timestamp": "2013-12-19T21:51:22.970Z",
    "status": "in-progress"
  },
  {
    "lsn": 18,
    "stepId": "0001_sg_create_sg1",
    "timestamp": "2013-12-19T21:51:24.031Z",
    "status": "completed",
    "elapsedTimeInSeconds": 1.068
  },
  {
    "lsn": 20,
    "stepId": "0003_sg_create_sg2",
    "timestamp": "2013-12-19T21:51:24.039Z",
    "status": "completed",
    "elapsedTimeInSeconds": 1.067
  },
  {
    "lsn": 21,
    "stepId": "0002_sg_update_add_access_sg1",
    "timestamp": "2013-12-19T21:51:24.060Z",
    "status": "in-progress"
  },
  {
    "lsn": 23,
    "stepId": "0004_sg_update_add_access_sg2",
    "timestamp": "2013-12-19T21:51:24.070Z",
    "status": "in-progress"
  },
  {
    "lsn": 31,
    "stepId": "0002_sg_update_add_access_sg1",
    "timestamp": "2013-12-19T21:51:25.224Z",
    "status": "completed",
    "elapsedTimeInSeconds": 1.163
  },
  {
    "lsn": 34,
    "stepId": "0004_sg_update_add_access_sg2",
    "timestamp": "2013-12-19T21:51:26.201Z",
    "status": "completed",
    "elapsedTimeInSeconds": 2.129
  },
  {
    "lsn": 35,
    "stepId": "0005_vm_create_vm1",
    "timestamp": "2013-12-19T21:51:26.213Z",
    "status": "in-progress"
  }
]





The runcws tool gets all the useful log entries for the transaction.
For this API method you can also specify a “begin LSN” and an “end LSN” to get just those log records you need.

Each log record can have the following propeties -


	lsn - the Log Sequence Number

	stepId - the workload step id

	timestamp - when this log entry was created

	status - which can be “in-progress”, “completed” or “failed”

	reason - if the status is “failed” - can be “retries”, “timeout” or “cancelled”

	elapsedTimeInSeconds - if the status is “completed” - this is the time taken for the step



You can see that for stepId “0000_kp_create_kp1” we have two log entries, one with LSN=1 with status “in-progress” and one with LSN=8 with status “completed”.
The timestamp indicates when the log entry was logged.
So this step began at 21:51:20.803, and completed at 21:51:22.948, for an elapsed time of 2.144 seconds.

However - stepId “0005_vm_create_vm1” (LSN=35) has only a log entry for “in-progress” - which means that at the time we did the method call, this step had started but had not yet completed.




Transaction Errors

To get the transaction errors:

>node runcws.js errors
errors (retrieve transaction errors)
options: {
  "url": "http://cws.computenext.com/api/transaction/06d7ab5f-f420-4fea-b0bf-456fbc14d884/errors",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
STATUS: 404
----- RESULT -----
{
  "code": 404,
  "message": "no errors found: transactionId: 06d7ab5f-f420-4fea-b0bf-456fbc14d884",
  "ticket": "f1e8c7dc-13d4-4d42-b999-2574dc6f1c93"
}





In this case there are no errors.

If an error is returned, it will include the stepId of the workload step that failed, plus some detailed error information.

Note that it is possible for this call to return an error for a step, but for the overall transaction to succeed.
This is because every step attempts a retry on the first error, so the second attempt might succeed.




Transaction Completes

Get the transaction status:

>node runcws.js status
status (retrieve transaction status)
options: {
  "url": "http://cws.computenext.com/api/transaction/06d7ab5f-f420-4fea-b0bf-456fbc14d884/status",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "transactionId": "06d7ab5f-f420-4fea-b0bf-456fbc14d884",
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ended": "2013-12-19T21:52:57.516Z",
  "status": "completed",
  "elapsedTimeInSeconds": 96.73
}





The transaction status is “completed” and the elapsedTimeInSeconds is given.

Get the steps:

>node runcws.js steps
steps (retrieve transaction steps)
options: {
  "url": "http://cws.computenext.com/api/transaction/06d7ab5f-f420-4fea-b0bf-456fbc14d884/steps",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
    "lsn": 1,
    "stepId": "0000_kp_create_kp1",
    "timestamp": "2013-12-19T21:51:20.803Z",
    "status": "in-progress"
  },
  {
    "lsn": 8,
    "stepId": "0000_kp_create_kp1",
    "timestamp": "2013-12-19T21:51:22.948Z",
    "status": "completed",
    "elapsedTimeInSeconds": 2.144
  },
  {
    "lsn": 9,
    "stepId": "0001_sg_create_sg1",
    "timestamp": "2013-12-19T21:51:22.961Z",
    "status": "in-progress"
  },
  {
    "lsn": 11,
    "stepId": "0003_sg_create_sg2",
    "timestamp": "2013-12-19T21:51:22.970Z",
    "status": "in-progress"
  },
  {
    "lsn": 18,
    "stepId": "0001_sg_create_sg1",
    "timestamp": "2013-12-19T21:51:24.031Z",
    "status": "completed",
    "elapsedTimeInSeconds": 1.068
  },
  {
    "lsn": 20,
    "stepId": "0003_sg_create_sg2",
    "timestamp": "2013-12-19T21:51:24.039Z",
    "status": "completed",
    "elapsedTimeInSeconds": 1.067
  },
  {
    "lsn": 21,
    "stepId": "0002_sg_update_add_access_sg1",
    "timestamp": "2013-12-19T21:51:24.060Z",
    "status": "in-progress"
  },
  {
    "lsn": 23,
    "stepId": "0004_sg_update_add_access_sg2",
    "timestamp": "2013-12-19T21:51:24.070Z",
    "status": "in-progress"
  },
  {
    "lsn": 31,
    "stepId": "0002_sg_update_add_access_sg1",
    "timestamp": "2013-12-19T21:51:25.224Z",
    "status": "completed",
    "elapsedTimeInSeconds": 1.163
  },
  {
    "lsn": 34,
    "stepId": "0004_sg_update_add_access_sg2",
    "timestamp": "2013-12-19T21:51:26.201Z",
    "status": "completed",
    "elapsedTimeInSeconds": 2.129
  },
  {
    "lsn": 35,
    "stepId": "0005_vm_create_vm1",
    "timestamp": "2013-12-19T21:51:26.213Z",
    "status": "in-progress"
  },
  {
    "lsn": 48,
    "stepId": "0005_vm_create_vm1",
    "timestamp": "2013-12-19T21:52:56.507Z",
    "status": "completed",
    "elapsedTimeInSeconds": 90.292
  }
]





You can see that now all steps have completed, and that VM 1 took about 90 seconds to reach the “running” state.

Get the workload:

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovm",
  "name": "Hello VM",
  "description": "Workload 'hello world' for one VM",
  "created": "2013-12-19T01:23:27.354Z",
  "updated": "2013-12-19T21:52:57.528Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 1",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my first virtual machine"
      }
    }
  ],
  "execute": {
    "created": "2013-12-19T21:52:57.527Z",
    "action": "activate",
    "transactionId": "06d7ab5f-f420-4fea-b0bf-456fbc14d884",
    "elements": [
      {
        "name": "VM 1",
        "uri": "vm/hpcloud/nova/standard.small",
        "parameters": {
          "imageUri": "image/hpcloud/nova/ami-00000075",
          "keyPairId": "*0000_kp_create_kp1",
          "securityGroupIds": [
            "*0001_sg_create_sg1",
            "*0003_sg_create_sg2"
          ]
        },
        "metadata": {
          "description": "hello world - my first virtual machine",
          "name": "VM 1"
        },
        "resource": {
          "id": "vm_hpcloud_nova_standard-small",
          "uri": "vm/hpcloud/nova/standard.small",
          "resourceType": "vm",
          "provider": "hpcloud",
          "region": "nova",
          "providerResourceId": "Standard.small",
          "cpuSpeed": "1.2",
          "cpuCount": "2",
          "localStorage": "60",
          "ram": "2",
          "operatingSystemVersion": "64 Bit",
          "zone": "nova",
          "connectorType": "openStack.compute"
        }
      }
    ]
  },
  "workloadStatus": "none"
}





Note that after the transaction has completed, the plan is no longer in the workload - it is no longer needed.
However, if the transaction fails, then the failed plan is included in the execute section (see below).

An execute section has been added to the workload. This is a snapshot of what the state of the workload was at the last time it was executed.

Get the “running workload” - all the instances that were created for this workload:

>node runcws.js listiwl
listiwl (retrieve all instances in the workload)
options: {
  "url": "http://cws.computenext.com/api/instance?workloadId=b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
    "instanceId": "dd13e743-33be-4b10-b740-99d8cf4f8d71",
    "created": "2013-12-19T21:51:29.681Z",
    "updated": "2013-12-19T21:52:26.831Z",
    "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
    "resourceUri": "vm/hpcloud/nova/standard.small",
    "resourceType": "vm",
    "provider": "hpcloud",
    "region": "nova",
    "providerResourceId": "Standard.small",
    "attributes": {
      "providerInstanceId": 2714865,
      "password": "qeh46YnWszk3aRxa",
      "instanceStatus": "running",
      "transientStatus": false,
      "privateIpAddress": "10.2.252.25",
      "publicIpAddress": "15.185.216.105"
    },
    "attributeTimestamps": {
      "password": "2013-12-19T21:52:26.800Z",
      "instanceStatus": "2013-12-19T21:52:26.809Z",
      "privateIpAddress": "2013-12-19T21:52:26.801Z",
      "publicIpAddress": "2013-12-19T21:52:26.808Z"
    },
    "metadata": {
      "description": "hello world - my first virtual machine",
      "name": "VM 1",
      "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
      "transactionId": "06d7ab5f-f420-4fea-b0bf-456fbc14d884"
    },
    "parameters": {
      "imageUri": "image/hpcloud/nova/ami-00000075",
      "keyPairId": "60e3e8e9-08aa-4934-90e2-0002de271fdc",
      "securityGroupIds": [
        "9a200d98-31ea-4bbc-a264-b83e5d6219f6",
        "b1092157-703a-4f30-9ed6-895f3277bcf5"
      ],
      "vm_providerResourceId": "Standard.small",
      "zone": "nova",
      "cpuCount": "2",
      "cpuSpeed": "1.2",
      "localStorage": "60",
      "ram": "2",
      "username": "ubuntu",
      "image_providerResourceId": "ami-00000075",
      "keyPairId_providerInstanceId": "60e3e8e9-08aa-4934-90e2-0002de271fdc",
      "securityGroupIds_providerInstanceId": [
        568643,
        568641
      ]
    }
  }
]








Cancel Transaction

We start with a workload that has two virtual machines defined (VM 1 and VM2):

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovm",
  "name": "Hello VM",
  "description": "Workload 'hello world' for one VM",
  "created": "2013-12-19T01:23:27.354Z",
  "updated": "2013-12-20T00:04:11.879Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 1",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my first virtual machine"
      }
    },
    {
      "name": "VM 2",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my SECOND virtual machine"
      }
    }
  ],
  "execute": {
    "created": "2013-12-20T00:03:12.487Z",
    "action": "deactivate",
    "transactionId": "f1e0ec0c-b871-4b71-be30-03eb05b61191",
    "elements": [
      {
        "name": "VM 1",
        "uri": "vm/hpcloud/nova/standard.small",
        "parameters": {
          "imageUri": "image/hpcloud/nova/ami-00000075",
          "keyPair": "KP 1",
          "securityGroups": [
            "SG 1",
            "SG 2"
          ]
        },
        "metadata": {
          "description": "hello world - my first virtual machine"
        }
      }
    ]
  },
  "workloadStatus": "none"
}





Plan activation and then execute:

>node runcws.js activate
activate (plan workload activation)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d/plan?action=activate",
  "method": "put",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadStatus": "in-progress",
  "action": "plan-activate"
}

>node runcws.js execute
execute (execute workload plan)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d/execute",
  "method": "put",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
### setting current transactionId: 654a5e87-04ff-439c-bd51-f08bb033e580
----- RESULT -----
{
  "workloadStatus": "in-progress",
  "action": "execute",
  "transactionId": "654a5e87-04ff-439c-bd51-f08bb033e580"
}





Get the workload steps:

>node runcws.js steps
steps (retrieve transaction steps)
options: {
  "url": "http://cws.computenext.com/api/transaction/654a5e87-04ff-439c-bd51-f08bb033e580/steps",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
    "lsn": 1,
    "stepId": "0000_vm_create_vm1",
    "timestamp": "2013-12-20T00:04:44.651Z",
    "status": "in-progress"
  },
  {
    "lsn": 3,
    "stepId": "0001_vm_create_vm2",
    "timestamp": "2013-12-20T00:04:44.659Z",
    "status": "in-progress"
  }
]





The create of both virtual machines is in-progress.

Cancel the transaction:

>node runcws.js cancel
cancel (cancel transaction)
options: {
  "url": "http://cws.computenext.com/api/transaction/654a5e87-04ff-439c-bd51-f08bb033e580/cancel",
  "method": "put",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "transactionId": "654a5e87-04ff-439c-bd51-f08bb033e580",
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "action": "cancel",
  "status": "in-progress"
}





The cancel operation is in-progress.

If we poll with “steps” eventually we see:

>node runcws.js steps
steps (retrieve transaction steps)
options: {
  "url": "http://cws.computenext.com/api/transaction/654a5e87-04ff-439c-bd51-f08bb033e580/steps",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
    "lsn": 1,
    "stepId": "0000_vm_create_vm1",
    "timestamp": "2013-12-20T00:04:44.651Z",
    "status": "in-progress"
  },
  {
    "lsn": 3,
    "stepId": "0001_vm_create_vm2",
    "timestamp": "2013-12-20T00:04:44.659Z",
    "status": "in-progress"
  },
  {
    "lsn": 7,
    "stepId": "0001_vm_create_vm2",
    "timestamp": "2013-12-20T00:05:14.802Z",
    "status": "failed",
    "reason": "cancelled",
    "elapsedTimeInSeconds": 30.14
  },
  {
    "lsn": 8,
    "stepId": "0000_vm_create_vm1",
    "timestamp": "2013-12-20T00:05:14.810Z",
    "status": "failed",
    "reason": "cancelled",
    "elapsedTimeInSeconds": 30.157
  }
]





Both steps have been cancelled.

If we poll with “status”, eventually we see:

>node runcws.js status
status (retrieve transaction status)
options: {
  "url": "http://cws.computenext.com/api/transaction/654a5e87-04ff-439c-bd51-f08bb033e580/status",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "transactionId": "654a5e87-04ff-439c-bd51-f08bb033e580",
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ended": "2013-12-20T00:05:59.814Z",
  "status": "failed",
  "reason": "cancelled",
  "stepId": "0001_vm_create_vm2",
  "elapsedTimeInSeconds": 75.174
}





Note that the transaction status may take some time to reach “cancelled” after the steps have reached “cancelled”.

The first step that detected that the workload was cancelled is identified.

However: even though we cancelled the transaction, the requests to create the virtual machines had already been sent to the region.
So the virtual machine instances are actually created.

Get the “running workload”:

>node runcws.js listiwl
listiwl (retrieve all instances in the workload)
options: {
  "url": "http://cws.computenext.com/api/instance?workloadId=b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
[
  {
    "instanceId": "0523e9cf-0fe9-4b8d-91e2-21aeca5a1ae3",
    "created": "2013-12-20T00:04:53.328Z",
    "updated": "2013-12-20T00:04:53.328Z",
    "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
    "resourceUri": "vm/hpcloud/nova/standard.small",
    "resourceType": "vm",
    "provider": "hpcloud",
    "region": "nova",
    "attributes": {
      "providerInstanceId": 2715437,
      "password": "AFdTwcwmFQc5DyAx",
      "instanceStatus": "creating",
      "transientStatus": true
    },
    "attributeTimestamps": {
      "password": "2013-12-20T00:04:53.318Z",
      "instanceStatus": "2013-12-20T00:04:53.325Z"
    },
    "metadata": {
      "description": "hello world - my first virtual machine",
      "name": "VM 1",
      "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
      "transactionId": "654a5e87-04ff-439c-bd51-f08bb033e580"
    },
    "parameters": {
      "imageUri": "image/hpcloud/nova/ami-00000075",
      "keyPairId": "60e3e8e9-08aa-4934-90e2-0002de271fdc",
      "securityGroupIds": [
        "9a200d98-31ea-4bbc-a264-b83e5d6219f6",
        "b1092157-703a-4f30-9ed6-895f3277bcf5"
      ],
      "vm_providerResourceId": "Standard.small",
      "zone": "nova",
      "cpuCount": "2",
      "cpuSpeed": "1.2",
      "localStorage": "60",
      "ram": "2",
      "username": "ubuntu",
      "image_providerResourceId": "ami-00000075",
      "keyPairId_providerInstanceId": "60e3e8e9-08aa-4934-90e2-0002de271fdc",
      "securityGroupIds_providerInstanceId": [
        568643,
        568641
      ]
    }
  },
  {
    "instanceId": "b6011557-1685-4379-856f-3cec844887fc",
    "created": "2013-12-20T00:04:53.353Z",
    "updated": "2013-12-20T00:04:53.353Z",
    "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
    "resourceUri": "vm/hpcloud/nova/standard.small",
    "resourceType": "vm",
    "provider": "hpcloud",
    "region": "nova",
    "attributes": {
      "providerInstanceId": 2715435,
      "password": "ykcLunMnGfH66Coz",
      "instanceStatus": "creating",
      "transientStatus": true
    },
    "attributeTimestamps": {
      "password": "2013-12-20T00:04:53.347Z",
      "instanceStatus": "2013-12-20T00:04:53.351Z"
    },
    "metadata": {
      "description": "hello world - my SECOND virtual machine",
      "name": "VM 2",
      "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
      "transactionId": "654a5e87-04ff-439c-bd51-f08bb033e580"
    },
    "parameters": {
      "imageUri": "image/hpcloud/nova/ami-00000075",
      "keyPairId": "60e3e8e9-08aa-4934-90e2-0002de271fdc",
      "securityGroupIds": [
        "9a200d98-31ea-4bbc-a264-b83e5d6219f6",
        "b1092157-703a-4f30-9ed6-895f3277bcf5"
      ],
      "vm_providerResourceId": "Standard.small",
      "zone": "nova",
      "cpuCount": "2",
      "cpuSpeed": "1.2",
      "localStorage": "60",
      "ram": "2",
      "username": "ubuntu",
      "image_providerResourceId": "ami-00000075",
      "keyPairId_providerInstanceId": "60e3e8e9-08aa-4934-90e2-0002de271fdc",
      "securityGroupIds_providerInstanceId": [
        568643,
        568641
      ]
    }
  }
]





Therefore you always need to check what running instances you actually have for the workload, because the transaction may have created one or more instances even though the transaction
itself has failed or been cancelled. And as noted before, billing considers the instances for charging purposes, not the transactions or workloads.

If you want to perform a “rollback” of all vm and vs instances created by the transaction then you can do a deactivation - see next section.




Plan Workload Deactivation

To generate a workload plan for deactivation:

>node runcws.js deactivate
deactivate (plan workload deactivation)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d/plan?action=deactivate",
  "method": "put",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadStatus": "in-progress",
  "action": "plan-deactivate"
}





Get the workload:

>node runcws.js getwl
getwl (retrieve workload)
options: {
  "url": "http://cws.computenext.com/api/workload/b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "method": "get",
  "auth": {
    "user": "63a25f81-15dd-481e-a4d4-c5ed9a80f93a",
    "pass": "<hidden>"
  }
}
----- RESULT -----
{
  "workloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d",
  "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
  "uniqueName": "hellovm",
  "name": "Hello VM",
  "description": "Workload 'hello world' for one VM",
  "created": "2013-12-19T01:23:27.354Z",
  "updated": "2013-12-19T21:52:57.528Z",
  "metadata": {
    "test": "this is metadata for the entire workload - can be anything",
    "test1": "another line of metadata"
  },
  "elements": [
    {
      "name": "VM 1",
      "uri": "vm/hpcloud/nova/standard.small",
      "parameters": {
        "imageUri": "image/hpcloud/nova/ami-00000075",
        "keyPair": "KP 1",
        "securityGroups": [
          "SG 1",
          "SG 2"
        ]
      },
      "metadata": {
        "description": "hello world - my first virtual machine"
      }
    }
  ],
  "execute": {
    "created": "2013-12-19T21:52:57.527Z",
    "action": "activate",
    "transactionId": "06d7ab5f-f420-4fea-b0bf-456fbc14d884",
    "elements": [
      {
        "name": "VM 1",
        "uri": "vm/hpcloud/nova/standard.small",
        "parameters": {
          "imageUri": "image/hpcloud/nova/ami-00000075",
          "keyPairId": "*0000_kp_create_kp1",
          "securityGroupIds": [
            "*0001_sg_create_sg1",
            "*0003_sg_create_sg2"
          ]
        },
        "metadata": {
          "description": "hello world - my first virtual machine",
          "name": "VM 1"
        },
        "resource": {
          "id": "vm_hpcloud_nova_standard-small",
          "uri": "vm/hpcloud/nova/standard.small",
          "resourceType": "vm",
          "provider": "hpcloud",
          "region": "nova",
          "providerResourceId": "Standard.small",
          "cpuSpeed": "1.2",
          "cpuCount": "2",
          "localStorage": "60",
          "ram": "2",
          "operatingSystemVersion": "64 Bit",
          "zone": "nova",
          "connectorType": "openStack.compute"
        }
      }
    ]
  },
  "workloadStatus": "none",
  "plan": {
    "action": "deactivate",
    "ownerId": "d00f16e6-7503-4838-a658-8b60594ff285",
    "created": "2013-12-19T22:54:48.108Z",
    "expires": "2013-12-19T22:59:48.108Z",
    "elements": [
      {
        "name": "VM 1",
        "uri": "vm/hpcloud/nova/standard.small",
        "parameters": {
          "imageUri": "image/hpcloud/nova/ami-00000075",
          "keyPair": "KP 1",
          "securityGroups": [
            "SG 1",
            "SG 2"
          ]
        },
        "metadata": {
          "description": "hello world - my first virtual machine"
        }
      }
    ],
    "serial": [
      {
        "parallel": [
          {
            "step": {
              "id": "0000_vm_delete_vm1",
              "action": "vm.delete",
              "instanceId": "dd13e743-33be-4b10-b740-99d8cf4f8d71",
              "uri": "vm/hpcloud/nova/standard.small",
              "resource": {
                "provider": "hpcloud",
                "region": "nova",
                "resourceType": "vm"
              },
              "metadata": {
                "description": "hello world - my first virtual machine",
                "name": "VM 1",
                "transactionId": "06d7ab5f-f420-4fea-b0bf-456fbc14d884",
                "originalWorkloadId": "b4ee62da-8dff-4a6b-b39f-54acf26a3a6d"
              },
              "timing": {
                "min": 15.08,
                "avg": 15.08,
                "max": 15.08
              }
            }
          }
        ]
      }
    ]
  }
}





You can see that a step has been added to delete the virtual machine instance.

You can now go ahead and execute this plan (as before, for activate) and it will delete the vm instance.







          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  

    
      Navigation

      
        	
          index

        	ComputeNext REST API 2 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2013, ComputeNext.
    

  _static/file.png





_static/minus.png





_static/comment-bright.png





_static/comment.png





search.html


    
      Navigation


      
        		
          index


        		ComputeNext REST API 2 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2013, ComputeNext.
    

  

_static/plus.png





README.html


    
      Navigation


      
        		
          index


        		ComputeNext REST API 2 documentation »

 
      


    


    
      
          
            
  
apidocumentation


Holds the ComputeNext API documentation.


This documentation is the documentation for the ComputeNext External API.


The documentation is built using the documentation editor [Sphinx] (http://sphinx-doc.org/index.html “Sphinx”) with [reStructuredText] (http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html) with the [rst2pdf] (https://code.google.com/p/rst2pdf/) extentsion.






          

      

      

    


    
        © Copyright 2013, ComputeNext.
    

  

_static/up.png





_static/down.png





_static/ajax-loader.gif





_static/down-pressed.png





_static/comment-close.png





_static/up-pressed.png





